

TEST REPORT EN 50549-1:2019

TUV SUD Test Report for Requirements for generating plants to be connected in parallel with distribution networks - Part 1: Connection to a LV distribution network - Generating plants up to and including Type B

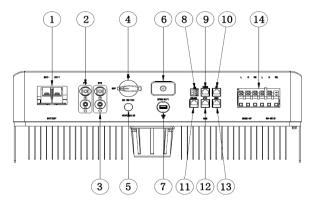
network - Generating plants up to and including Type B					
Report No.:	64.290.23.30723.01				
Date of issue:	2023-06-29				
Project handler:	Jinjing Peng				
Testing laboratory:	TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch				
Address:	TÜV SÜD Testing Center, D1 building, No. 63 Chuangqi Road, Shilou Town, Panyu District, Guangzhou 511447, P.R. China				
Testing location:	as above				
Client:	EAST Group Co., Ltd.				
Client number:	076644				
Address: Contact person:	No.6 Northern Industry Road, Songshan Lake Sci. & Tech. Industry Park, 523808 DongGuan City, Guangdong Province PEOPLE'S REPUBLIC OF CHINA Haijian Pan				
	This TUV SUD test report form is based on the following requirements:				
Standard:					
	EN 50549-1:2019/AC:2019 & Belgium Deviation C10/11 ed2.2, 2021				
TRF number and revision:	TRF EN 50549-1:2019/AC:2019 rev.0/2019-04				
TRF originated by:	TUV SUD Product Service, Mr. Billy Qiu				
Copyright blank test report:	This test report is based on the content of the standard (see above). The test report considered selected clauses of the a.m. standard(s) and experience gained with product testing. It was prepared by TUV SUD Product Service. TUV SUD Group takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.				
General disclaimer:	This test report may only be quoted in full. Any use for advertising purposes must be granted in writing. This report is the result of a single examination of the object in question and is not generally applicable evaluation of the quality of other products in regular production.				
Scheme:	GS Mark NRTL Mark EU-Directive				
	TUV Mark X Type verification of conformity				
Non-standard test method:	No Yes, see details under Summary of testing				
National deviations:	Belgium Deviation C10/11 ed2.2, 2021				
Number of pages (Report):	58				
Number of pages (Attachments):	N/A				
Compiled by:	Jinjing Peng Daya Timiting				
	(Printed Name and Signature)				
Approved by:	Yuneng Chen				
	(Printed Name and Signature)				

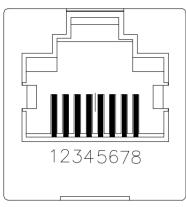
Telephone : +86 20 38320668 Telefax : +86 20 38320478

	1	
Test sample:	Hybrid Inverter	
Type of test object:	Type test	
Trademark:	EAST [®]	
Model and/or type reference:	EAHI-3000-SL, EAHI-3600-SL, EAHI-5000-SL, EAHI-6000-SL	
Rating(s):	See page of 5-6	
Manufacturer:	EAST Group Co., Ltd.	
Manufacturer number:	076644	
Address:	No.6 Northern Industry Road, Songshan Lake Sci. & Tech. Industry Park, 523808 DongGuan City, Guangdong Province PEOPLE'S REPUBLIC OF CHINA	
Sub-contractors/ tests (clause):	N/A	
Name:	N/A	
	Complete test according to TRF	
	Partial test according to manufacturer's specifications	
Order description:	Preliminary test	
	Spot check	
	Others:	
Date of order:	2023-04-07	
Date of receipt of test item:	2023-04-25	
Date(s) of performance of test:	2023-04-25 to 2023-05-17	

Test item particulars:	
Equipment mobility:	 ☐ movable ☐ hand-held ☐ stationary ☑ fixed ☐ transportable ☐ for building-in
Connection to the mains:	 □ pluggable equipment □ direct plug-in □ permanent connection □ for building-in
Enviromental category:	⊠ outdoor ☐ indoor ☐ indoor unconditional conditional
Over voltage category Mains:	
Over voltage category PV	
Mains supply tolerance (%):	+/- 10%
Tested for power systems:	TN system
IT testing, phase-phase voltage (V):	N/A
Class of equipment:	⊠ Class I □ Class II □ Class III □ Not classified
Mass of equipment (kg):	21.4kg (EAHI-3000-SL, EAHI-3600-SL), 24.8(EAHI-5000-SL, EAHI-6000-SL)
Pollution degree:	PD 3 (External), PD 2 (Internal)
IP protection class:	IP 66

General product information:


1. The unit is non-isolated (transformerless) hybrid inverter for connection with public low voltage grid, for outdoor use.


2. The unit may be connected single-phase, a storage unit and a balancing device must be used to ensure that the requirements of maximum permissible unbalance \leq 5 kVA according to 7.6.7 of Belgium Deviation C10/11 ed2.2, 2021 are met and a registration with the grid operators the finally installation.

3. If certain functions are not permitted by local regulation, the function shall be disabled by hardware or software setting (if applicable) by the manufacturer before putting into the market. For example, it's not permissible to draw electricity from the grid and then feed it back in order to claim statutory reimbursement in some nations.

4. Low voltage electrical installations shall comply with national and local regulation. Only qualified electricians are allowed to install and maintain the converter.

5. The scheme of remote control as below: data-logger receives the command from central computer and transfers it to the signal to PGU's RS-485 port, after receiving the signal, the inverter will decrease output active power to zero in 5 seconds. The RS-485 port and the connection schematic are as below:

	S/N	Mark		Purp	ose					
	1	Battery termi	nal	Conn	Connect the battery					
	2	Positive PV terminal		Conn	Connect the PV positive electrode					
	3	Negative PV terminal		Connect the PV negative electrode						
	4	PV input switch		Connect/ disconnect the PV switch						
	5	Vent valve		Disch	harge the gro	owing air from	housing			
	6	The inverter unloads the data/ connects with the								
	7	USB		USB	upgrade inte	erface				
	8	Dry contact i	nput	Conn	Connect the user's dry contact circuit					
	9	Safety communication CT or kilo-watt-hour meter signal input		communication Reserved according to Australia safety regulation						
	10									
	11	RS485		RS485 communication with the upper computer						
	12	NTC tempera sampling	ature	Reserved Battery communication input						
	13	BMS commu	nication							
	14	AC wiring ter	minal	Load	and grid inp	out				
Pin	1	2	3		4	5	6	7		8
finition	RS3_485-	RS3_485-	RS3_485	5-	RS3_485-	RS3_485+	RS3_485+	RS3_4	85+	RS3_485+

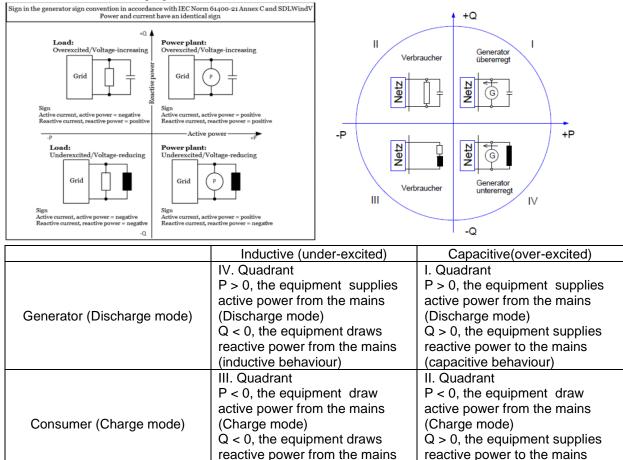
6. Software version: V1002, DSP: V1002, MCU: V1005, Firmware version: V1.0.

Telephone : +86 20 38320668 Telefax : +86 20 38320478

limited by software, All			Mode		leiences are as i	01003.		
Component	EAHI-3000-	SL, EAHI-3600-S			I-5000-SL, EAHI	-6000-SL		
MPPT Tracker number	1	2			,			
Inverter inductor	etic ring NPF220 97.8uH±10%		Triple magnetic ring NPS22060*3P 1.7*2P 38Ts, 597.8uH±10%					
DC switch	PEDS150R-				S150R-HM25-4	1±1070		
INV IGBT tube		N065WED(650V, 50A, -55°C-			JT075N065WED(650V, 75A,-40°C-			
	175°C)				C) ;75T65AK5SD(65 :-150°C)	50V, 75A, -		
Characteristic data (no	ot shown on the m	arking plate):						
Model		EAHI-3000- SL	EAHI-360 SL	0-	EAHI-5000- SL	EAHI-6000- SL		
		PV input r	ating					
Rated input voltage			;	360 \	/ d.c.			
Maximum input voltage	9		į	550 \	/ d.c.			
MPPT voltage range			100 V (d.c	- 540 V d.c.			
Full-load voltage range			250 V d.c. – 450 V d.c.					
Maximum input current		15 A d.c.		15 A d.c.*2				
Maximum short circuit current		20 A d.c.			20 A d.c.*2			
Maximum input power		4680 W	4680 W	/	6500 W	7800 W		
		Battery input / o	utput rating					
Battery type			Lead-ac	cid / L	i-ion battery			
Rated voltage		48.0 V d.c. / 51.2 V d.c.						
Battery voltage range			42.0 V d.c. – 58.0 V d.c.					
Maximum charging cur	rent	66 A d.c.	75 A d.c	;.	100 A d.c.	100 A d.c.		
Maximum charging pov	wer	3000 W	3600 W	/	5000 W	5000 W		
Maximum discharging	current	66 A d.c.	75 A d.c	;.	100 A d.c.	120 A d.c.		
Maximum discharging	power	3000 W	3600 W	/	5000 W	6000 W		
		Grid input	rating					
Rated input voltage			2	230 \	/ a.c.	Γ		
Rated output current		13.05 A a.c.	15.70 A a	.C.	21.80 A a.c.	26.09 A a.c		
Maximum input current		13.05 A a.c.	15.70 A a	.C.	21.80 A a.c.	26.09 A a.c		
Maximum input power battery	from grid to	3000 W	3600 W	/	5000 W	6000 W		
Maximum input power	from grid	3000 W	3600 W	1	5000 W	6000 W		
Rated input frequency				50	Hz			
		Grid output	rating					
Rated output voltage			2	230 \	/ a.c.	I		
Rated output current		13.05 A a.c.	15.7 A a.	<u> </u>	21.8 A a.c.	26.09 A a.c.		

5F, Communication Building, 163 Pingyun Rd, Huangpu Ave. West,Guangzhou, 510656, P.R.China

Rated output power	3000 W	3600 W	5000 W	6000 W
Maximum output active power	3000 W	3600 W	5000 W	6000 W
Maximum output apparent power	3000 VA	3600 VA	5000 VA	6000 VA
Rated output frequency	cy 50 Hz			
Power factor	0.8 under-excited to 0.8 over-excited			
Attachments: N/A				


"(see remark #)" refers to a remark appended to the report. "(see appended table)" refers to a table appended to the report. Throughout this report **a point** is used as the decimal separator. The test results presented in this report relate only to the object tested. This report shall not be reproduced except in full without the written approval of the testing laboratory.

Summary of testing:

Full tests method is based on draft standard EN 50549-1:2019/AC:2019 and Belgium Deviation C10/11 ed2.2, 2021 as a reference, test voltage is on nominal voltage 230 Va.c., and nominal frequency 50Hz.

Generator sign convention has been applied for all measurements and results given in this report. This is described in the following figure and table.

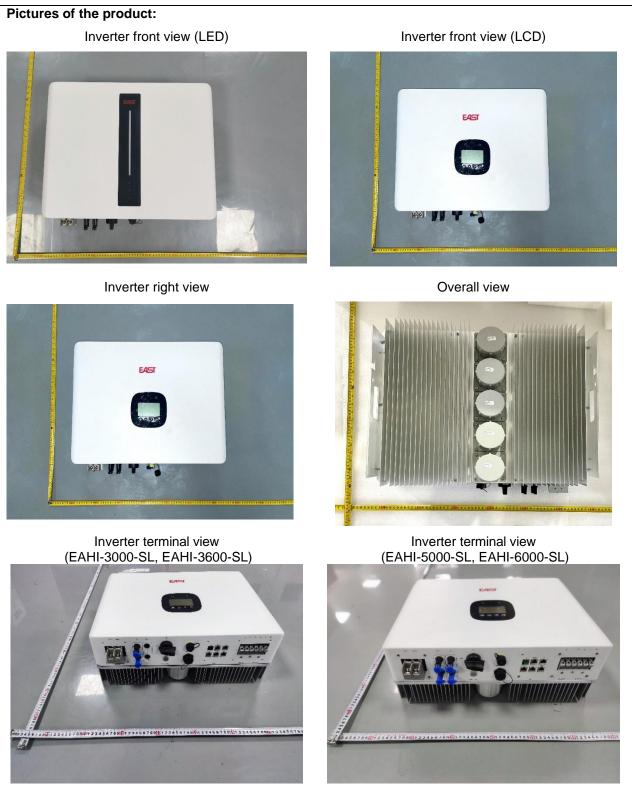
	(inductive	behaviour)		(capacitive behaviour)			
Tests performed (name of test and test clause):							
Clause of Belguim	Requirement	Clause of EN 50549-1 for type A	EN 505	549-1 requirement			
Annex D.3	Integrated automatic separation system	4.9.3	Require protect	ements on voltage and frequency ion			
Annex D.4.1 & Annex D.4.3	Operating frequency range Continuous operating voltage range	4.4.2 & 4.4.4		ing frequency range& Continuous ng voltage range			
Annex D.4.2	Maximum admissible power reduction in case of underfrequency	4.4.3		Il requirement for active power y at under-frequencies			
Annex D.5.1	Rate of change of frequency (RoCoF) immunity	4.5.2	Rate of immuni	f change of frequency (ROCOF) ity			
Annex D.6.1	Power response to overfrequency	4.6.1	Power	response to over frequency			

Telephone : +86 20 38320668 Telefax : +86 20 38320478

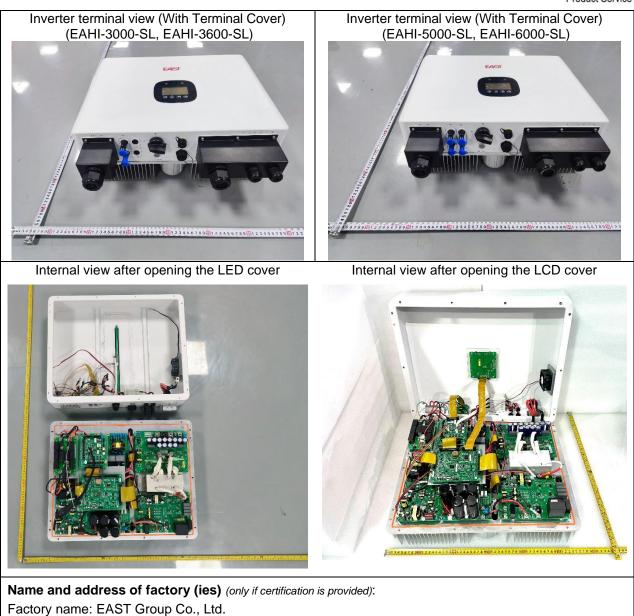
Annex D.6.2	Power response to underfrequency	4.6.2	Power response to under frequency
Annex D.7.1	Voltage support by reactive power	4.7.2	Voltage support by reactive power
Annex D.7.2	Voltage related active power reduction P(U)	4.7.3	Voltage related active power reduction
Annex D.8	Connection and reconnection	4.10	Connection and starting to generate electrical power
Annex D.9.1	Ceasing active power	4.11.1	Ceasing active power
☐ deviation(s) ⊠ no deviation			
Ino deviation	s found	st method(s)	
Additional info Sub clause:		st method(s)	
Additional info	s found ormation on Non-standard tes N/A	st method(s)	
Additional info Sub clause: Page: Rational:	s found ormation on Non-standard tes N/A N/A		

Copy of marking plate:

680 W Vd.c. Vd.c. Vd.c. Ad.c. Ad.c.
Vd.c. Vd.c. Ad.c. Ad.c.
Vd.c. Ad.c. Ad.c.
Ad.c. Ad.c.
Li-ion)
Ad.c.
Ad.c.
Ad.c.
Va.c.
50 Hz
Aa.c.
000W
000VA
agging
8 Va.c.
000W
Va.c.
Aa.c.
50 Hz
7 mm
1.4 kg
IP66
~ 60°C
I


4680 W
360 Vd.c.
550 Vd.c.
100 Vd.c. ~ 540 Vd.c.
15 Ad.c. 20 Ad.c.
48 Vd.c.(Lead-acid)/51.2 Vd.c.(Li-ion)
75 Ad.c.
75 Ad.c.
230 Va.c.
50 Hz
15.7 Aa.c.
3600W
3600VA
0.8 leading ~ 0.8 lagging
207 Va.c. ~ 253 Va.c.
3600VA/3600W
230 Va.c.
15.7 Aa.c.
50 Hz
548x440x197 mm
21.4 kg
IP66
-25 ~ 60°C
Ι

PV input		PV input	
Max. input power	6500 W	Max. input power	7800 V
Rated input voltage	360 Vd.c.	Rated input voltage	360 Vd.d
Max. input voltage	550 Vd.c.	Max. input voltage	550 Vd.o
MPPT voltage range	100 Vd.c. ~ 540 Vd.c.	MPPT voltage range	100 Vd.c. ~ 540 Vd.c
PV max input current	15 Ad.c.+15 Ad. c.	PV max input current	15 Ad. c. +15 Ad
Max. short circuit current	20 Ad.c.+20 Ad. c.	Max. short circuit current	20 Ad. c. +20 Ad
Battery		Battery	
Rated voltage 48 V	/d.c.(Lead-acid)/51.2 Vd.c.(Li-ion)		/d.c.(Lead-acid)/51.2 Vd.c.(Li-ion
Max.charge current	100 Ad.c.	Max.charge current	100 Ad.o
Max.discharge current	100 Ad.c.	Max.discharge current	120 Ad.o
AC grid		AC grid	
Rated output voltage	230 Va.c.	Rated output voltage	230 Va.o
Rated grid frequency	50 Hz	Rated grid frequency	50 H
Rated input/output current	21.8 Aa.c.	Rated input/output current	26.09 Aa.o
Rated input/output power	5000W	Rated input/output power	6000V
Max. apparent power	5000VA	Max. apparent power	6000V/
Power factor range	0.8 leading ~ 0.8 lagging	Power factor range Input voltage range	0.8 leading ~ 0.8 laggin 207 Va.c. ~ 253 Va.c
Input voltage range	207 Va.c. ~ 253 Va.c.		207 va.c. ~ 255 va.c
.oad output		Load output	
Rated output power	5000VA/5000W	Rated output power	6000VA/6000V
Rated output voltage	230 Va.c.	Rated output voltage	230 Va.o
Rated output current	21.8 Aa.c.	Rated output current	26.09 Aa.o
Rated output frequency	50 Hz	Rated output frequency	50 H
General data		General data	
Dimensions(W×H×D)	548x440x197 mm	Dimensions(W×H×D)	548x440x197 mn
Weight	24.8 kg	Weight	24.8 k
Protection rating	IP66	Protection rating	IP6
Operating temperature	-25 ~ 60°C	Operating temperature	-25 ~ 60°0
Protection class:	I	Protection class:	
EAST GROUP CO., LTD.		EAST GROUP CO., LTD.	5 min eastups.com


and the power factor range: 0.8 under-excited ... 0.8 over-excited.

TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch, TÜV SÜD Group 5F, Communication Building, 163 Pingyun Rd, Huangpu Ave. West,Guangzhou, 510656, P.R.China

Address: No.6 Northern Industry Road, Songshan Lake Sci. & Tech. Industry Park, 523808 DongGuan

City, Guangdong Province PEOPLE'S REPUBLIC OF CHINA

Possible test case verdicts:	
test case does not apply to the test object: test object does meet the requirement:	N/A (not applicable / not included in the order) P (Pass)
test object does not meet the requirement: Possible suffixes to the verdicts:	F (Fail)
suffix for detailed information for the client: suffix for important information for factory inspection:	C (Comment) M (Manufacturing)

Product	Service
---------	---------

	EN 50549-1:2019/AC:2019		
Clause	Requirement + Test	Result – Remark	Verdict
4	Requirements on generating plants		
4.1	General		
4.2	Connection scheme		Р
4.3	Choice of switchgear		Р
4.3.1	General		Р
4.3.2	Interface switch		Р
4.4	Normal operating range		Р
4.4.1	General		Р
4.4.2	Operating frequency range	Amended to 47.5 to 51.5 Hz according to C10/11:2021	Ρ
4.4.3	Minimal requirement for active power delivery at underfrequencies		Ρ
4.4.4	Continuous operating voltage range		Р
4.5	Immunity to disturbances		Р
4.5.1	General		Р
4.5.2	Rate of change of frequency (ROCOF) immunity	See appendix table	Р
4.5.3	Under-voltage ride through (UVRT)	Not suitable for Type A unit	N/A
4.5.4	Over-voltage ride through (OVRT)	Not suitable for Type A unit	N/A
4.6	6 Active response to frequency deviation		Р
4.6.1	Power response to overfrequency	Amended step response time and settling time according to C10/11:2021	Ρ
4.6.2	Power response to underfrequency	Amended default droop to 2% and step response time and settling time according to C10/11:2021	N/A
4.7	Power response to voltage changes		Р
4.7.1	General	Set according to C10/11:2021	Ρ
4.7.2	Voltage support by reactive power	See appendix table	Р
4.7.2.1	General		Р
4.7.2.2	Capabilities	Set according to C10/11:2021	Ρ

Clause	Requirement + Test	Result – Remark	Verdict
4.7.2.3	Control modes	Set according to C10/11:2021	Р
4.7.2.3.1	General		P
4.7.2.3.2	Setpoint control modes		Р
4.7.2.3.3	Voltage related control modes		Р
4.7.2.3.4	Power related Control mode		Р
4.7.3	Voltage related active power reduction	Set according to C10/11:2021	Р
4.7.4	Short circuit current requirements on generating plants		N/A
4.7.4.1	General		N/A
4.7.4.2	Generating plant with non-synchronous generating technology		N/A
4.7.4.2.1	Voltage support during faults and voltage steps		N/A
4.7.4.2.2	Zero current mode for converter connected generating technology		N/A
4.7.4.2.3	Induction generator based units		N/A
4.7.4.3	Generating plant with synchronous generating technology - Synchronous generator based units		N/A
4.8	EMC and power quality		N/A
4.9	Interface protection		Р
4.9.1	General	Set according to C10/11:2021	Р
4.9.2	Void		Р
4.9.3	Requirements on voltage and frequency protection		Р
4.9.3.1	General	Set according to C10/11:2021	Р
4.9.3.2	Undervoltage protection [27]		Р
4.9.3.3	Overvoltage protection [59]		Р
4.9.3.4	Overvoltage 10 min mean protection		Р
4.9.3.5	Underfrequency protection [81<]		Р
4.9.3.6	Overfrequency protection [81>]		Р
4.9.4	Means to detect island situation		Р
4.9.4.1	General		Р
4.9.4.2	Active methods tested with a resonant circuit		N/A
4.9.4.3	Switch to narrow frequency band (see Annex E and Annex F)		N/A
4.9.5	Digital input to the interface protection	Set according to C10/11:2021	N/A
4.10	Connection and starting to generate electrical power		Р

	EN 50549-1:2019/AC:2019	
Clause	Requirement + Test Result - Remark	Verdict
4.10.1	General Set according to C10/11:2021	Р
4.10.2	Automatic reconnection after tripping	Р
4.10.3	Starting to generate electrical power	Р
4.10.4	Synchronization	Р
4.11	Active power reduction on set point	Р
4.11.1	Ceasing active power	Р
4.11.2	Reduction of active power on set point	Р
4.12	Remote information exchange	N/A
4.13 Requirements regarding single fault tolerance of interface protection system and interface switch		Р

|--|

	Belgium Deviation C10/11 ed2.2, 2021			
Clause	Requirement + Test	Result	- Remark	Verdict
D.3	Integrated automatic separation system			Р
	This clause is applicable to power-generating units with a maximum power ≤ 30 kVA.			Р
	An integrated automatic separation system is strongly recommended in order to facilitate the installation procedure. Indeed, if the power-generating unit is not equipped with such an integrated system, an external device must be used (see section § 7.5). For the integrated automatic separation system, the			Ρ
	requirements of this clause apply.Following protection functions are required:• Overvoltage 10 min mean• Overvoltage• Undervoltage• Undervoltage• Overfrequency• Underfrequency• A means to detect island situation (LoM) according to EN 62116.All of these protection functions must comply with the relevant requirements in EN 50549-1 (in edition 2019, section 4.9.3 « Requirements on voltage and frequency protection »).The integrated automatic separation system must have single fault tolerance according to EN 50549-1. (edition 2019, see clause 4.13 « Requirements regarding single fault tolerance of interface protection system and interface switch	table	pendix	P
	 »). The integrated automatic separation system must be set in accordance with the settings as specified in ANNEXE C (C.1). 	Sooor	pondix	Р
D.4	Operating ranges	table	pendix	
	Generating plants shall have the capability to operate in the operating ranges specified below regardless of the topology and the settings of the interface protection.			Р
D.4.1	Operating frequency range [NC RfG Art 13 1.]	See ap	pendix	Р
	This clause in not applicable to backup power systems as specified in § 2.2.1.			Р
	The power-generating unit must comply with the minimum requirements of the applicable standard EN 50549 or EN 5055-2 on the operating frequency range (edition 2019, see clause 4.4.2 « Operating frequency range »)			Р
	Additionally, the DSO shall be informed about the capability of the power-generating unit to operate in the frequency range from 51,5 Hz and 52,5 Hz and, where appropriate, the maximum duration of operation in this frequency range.			Р

Clause	Poquiroment Test	Result – Remark	Vardiet
Clause	Requirement + Test	Result – Remark	Verdict
	The URD cannot without good reason refuse to apply wider frequency ranges or longer minimum operating periods than those specified above, provided that the technical and economic impact is limited31		
D.4.2	Maximum admissible power reduction in case of underfrequency [NC RfG Art 13 4. + Art 13 5.]	See appendix table	P
	This clause is not applicable to backup power systems as specified in §2.2.1.		Р
	In general, a power-generating unit must continue to operate in case of a reduction of the frequency at the point of connection. This means that, in underfrequency, the power- generating unit should reduce the output power as little as possible and at least being capable of staying above the limit specified hereafter.		P
	Where the technical capabilities of the power-generating unit are influenced by ambient conditions, these technical capabilities may be demonstrated using the following reference conditions: :		Р
	• Temperature : 0 °C		
	Altitude : between 400 and 500 m		
	Humidity : between 15 and 20 g H2O/kg air		
	Remark: If the power-generating unit has the capability to raise the output in underfrequency situations, this is not forbidden but subject to specific requirements (see Section D.6.2 « Power response to underfrequency »).		
D.4.2.1	Limit for non-synchronous power-generating technology (Power Park Modules)		Р
	 The power-generating unit must comply with the most stringent requirement of EN 50549-1 or EN 50549-2 (edition 2019, see clause 4.4.3 « Minimal requirement for active power delivery at underfrequency »). The characteristics of the limiting curve are given in the Table 10. Table 10 – characteristics of the limiting curve for the non- 		Ρ
	synchronous power-generating technologies		N/A
D.4.2.2	Limits for synchronous power-generating technology In steady state (from t2 onwards), the power-generating unit must comply with the relevant default requirement of the applicable standard EN 50549-1 or EN 50549-2 (edition 2019, see section 4.4.3 « Minimal requirement for active power delivery at underfrequency »).		N/A
	Additionally, in the transient time (between t1 and t2), the power-generating unit must comply with the relevant most stringent requirement of EN 50549-1 or EN 50549-2. (In edition 2019 of the standard, the relevant requirements can be found in clause 4.4.3 « Minimal requirement for active power delivery at underfrequency »). t1, t2 and t3 are given in the following table, together with the		N/A

Clause	Requirement + Test	Result – Remark	Verdict
	Table 11 – Characteristics of the limiting curves for the synchronous power-generating technologies		
D.4.3	Continuous operating voltage range	See appendix table	Р
	The power-generating unit must comply with the relevant requirement of EN 50549-1 or EN 50549-2 (edition 2019, see clause 4.4.4 « Continuous operating voltage range »).		P
	In brief, the requirement in the standard specifies the power- generating plant should be capable to operate continuously when he voltage at the point of connection is within the following range :	Connect to low voltage network	P
	• For a connection to the low voltage network: 85 % Un < U < 110 % Un where Un = 230 V		
	 For a connection to the high voltage network: 90 % Uc < U < 110 % Uc where Uc is the declared voltage. 		
	It is also allowed to reduce apparent power in case of voltage is below respectively 95 % Un or 95 % Uc.		
D.5	Immunity to disturbances		Р
	Independent of the topology and the settings of the interface protection, a power-generating unit must have the following withstand capabilities.		P
D.5.1	Rate of change of frequency (RoCoF) immunity [NC RfG Art. 13 1.(b)]		Р
	This clause does not apply to the backup power systems as specified in §2.2.1.		Р
	The power-generating unit must comply with the relevant requirements of the applicable standard EN 50549-1 or EN 50549-2 (edition 2019, see section 4.5.2 « Rate of change of frequency (RoCoF) immunity ») taking the additional modifications and information specified hereunder into account.		P
	The power-generating unit shall have the capability to stay connected and operate when the frequency at the point of		Р

connection changes with the frequency against time profiles as depicted in the figures hereunder. When considering a sliding measurement window of 500ms, these profiles have a

For synchronous generating technology, this requirement is more stringent than the default value in the applicable standard EN 50549-1 or EN 50549-2 (2 Hz/s instead of 1 Hz/s) as, in contrast with the standard, no distinction is made

Under-voltage ride through UVRT [NC RfG Art. 14 3.(a) +

This section is not applicable to backup power systems as

Figure 10 - Frequency against time profiles for rate of

maximum RoCoF of 2 Hz/s.

Art. 17 3. + Art. 20 3.(a)]

specified in §2.2.1.

change of frequency immunity

between power-generating technologies.

Belgium Deviation C10/11 ed2.2, 2021

D.5.2

Telephone : +86 20 38320668 Telefax : +86 20 38320478 Ρ

N/A

N/A

		1		1
Clause	Requirement + Test	Result -	- Remark	Verdict
	For a power-generating unit that is part of a power- generating module with a power \ge 1 MW (type B in accordance with NC RfG) this paragraph is mandatory.			N/A
	For a power-generating unit that is part of a power- generating module with a power < 1 MW, this paragraph is non-mandatory and to be considered as a orienting capability, not as a hard requirement. However, the real withstand capability to voltage dips shall be provided during the homologation process			N/A
	 The power-generating unit must comply with the relevant requirements of the applicable standard EN 50549-1 or EN 50549-2 (edition 2019, see clause 4.5.3 « Under-voltage ride through (UVRT) »), with the following change: The voltage-time profiles are to be replaced by the profiles hereunder. 			N/A
	As a consequence, for synchronous generating technology this profile is more stringent than the default requirement in EN 50549-1 or EN 50549-2.			N/A
	For some power-generating technologies, the behaviour of the power-generating unit during and after voltage dips may be impacted by the short circuit power available at the point of connection. For such technologies different cases can be considered:			N/A
	• Compliance with this UVRT requirement can be demonstrated considering a ratio of 10 between the available short circuit power at the connection point and the maximum power of the considered power-generating module. In this case, no further checks are needed.			
	• If not, the manufacturer must declare the minimum short- circuit power conditions for which the UVRT-requirement can be complied with. This value shall be considered during the installation process.			
	In line with EN 50549-1 or EN 50549-2 at least 90% of the pre-fault power or 90% of the available power whichever is the smallest, shall be resumed as fast as possible, but at the latest within the following default time after the voltage returned to the continuous operating voltage range (85% Un < U < 110% Un for a connection to a low-voltage distribution network; 90% Uc < U < 110% Uc for a connection to a high-voltage distribution network):			N/A
	 3 seconds for a power-generating unit with synchronous generating technology 1 second for a power-generating unit with non-synchronous generating technology 			
	Another site specific maximum allowed time is to be agreed during the commissioning process. This decision must be taken with the DSO in coordination with the TSO.			N/A
	For a backup power system connected to the high voltage distribution network as specified in §2.2.1, the general			N/A

Belgium Deviation C10/11 ed2.2, 2021

Telephone : +86 20 38320668 Telefax : +86 20 38320478

Belgium Deviation C10/11 ed2.2, 2021				
Clause	Requirement + Test	Result – Remark	Verdic	
	requirement is this clause may be relaxed, replacing the voltage-time profile by the figure underneath.			
	Figure 13 – Voltage-time profile for packup power systems			
D.5.3	Over-voltage ride through (OVRT)		N/A	
	Requirement under consideration for a future edition. No requirement in this edition.		N/A	
D.6	Active response to frequency deviations		Р	
D.6.1	Power response to overfrequency [NC RfG Art 13 2.]	See appendix table	Р	
	This clause is not applicable to backup power system as specified in section §2.2.1		Р	
	The power-generating unit must comply with the relevant requirements of the applicable standard EN 50549-1 or EN 50549-2 (edition 2019, see 4.6.1 « Power response to overfrequency ») taking into account the additional modifications and information specified hereunder.		Р	
	Instead of the default maximum step response time of 30s specified in the standards EN 50549-1 and EN 50549-2, the following dynamic step response characteristics are required:		Р	
	 For synchronous power-generating technologies Table 12 – Dynamic step response time characteristics (synchronous power-generating technologies) 		N/A	
	For non-synchronous power-generating technology		Р	
	Tableau 13 - Dynamic step reponse time characteristics (non-synchronous power-generating technologies)			
	The figure hereunder clarifies the terms « Step response time» and « Settling time». In this clause, the 'Value' is the active power and the tolerance is 10%.		Р	
	Figure 14 – Timing data for step response behaviour			
	In line with the default requirement of the applicable standard EN 50549-1 :2019 or EN 50549-2:2019, power-generating units reaching their minimum regulating level shall, in the event of further frequency increase, maintain this power level until a frequency decrease results in a power setpoint which is again above this level.		P	
	The optional deactivation threshold fstop is not required. In case fstop is implemented, it shall be deactivated.		Р	
	At the time of deactivation of the active power frequency response (= frequency goes down below the threshold frequency f1), the active power can be increased to up to the level of the available power. Nevertheless this shall be done respecting a power limit with a gradient of 10% Pmax/min. The parameter setting shall be as follows: Table 14 – Parameter settings for power response to overfrequency	Frequency threshold can be set 50.2 Hz to 50.5 Hz, default setting 50.2 Hz is selected and tested	Ρ	
	For energy storage systems with a connection to the high-		N/A	

Clause	Requirement + Test	Result – Remark	Verdic
Clause		Result – Remark	veruic
	technical or security reasons, agree with the DSO on applicable minimum state of charge limits in his connection agreement.		
	The settings must be protected from unpermitted interference (e.g. by a password or seal).		Р
	Automatic disconnection and reconnection as alternative for the droop function [NC RfG Art. 13 2.(b)] are not permitted by default as per the TSO provisions.		Р
D.6.2	Power response to underfrequency		Р
	The power-generating unit must comply with the relevant requirements of the applicable EN 50549-1 or EN 50549-2 (edition 2019, see clause 4.6.2 « Power response to underfrequency ») taking additional modifications and information as specified hereunder into account.	See appendix table	P
	This clause is applicable to energy storage systems. For justified technical or security reasons, the DSU might agree with the DSO (in his connection agreement is the power- generating plant is connected to the high-voltage distribution network) on applicable maximum state of charge limits in his connection agreement.		P
	This clause is optional for all other power-generating units. When, in such units, the capability of activating active power response to underfrequency is activated, the power- generating units must comply with the requirements of this clause.		P
	Instead of the default maximum step response time of 30s in EN 50549-1 and EN 50549-2, the required dynamic step response characteristics (step response time and settling time) are identical to those stipulated above regarding the power response to overfrequency, including the alternative approach for power-generating units based on a gas turbine or an internal combustion engine (see D.6.1).	Frequency threshold 49.8 Hz is set and tested respectively	P
	If the function is enabled, the parameters shall be set as following: Table 15 – Parameters settings for power response to underfrequency		P
	The settings must be protected from unpermitted interference (e.g. by a password or seal).		Р
D.7	Power response to voltage changes		Р
D.7.1	Voltage support by reactive power [NC RfG Art 17 2.(a) + Art 20 2.(a)]		Р
	A backup power system as referred to in section §2.2.1, must not comply with the requirements of this clause. Instead, for such a system, the power factor must be as close to 1 as possible and may definitely not fall below the limit of 0.85 during in-parallel operation. No control mode at all for the reactive power is imposed by the DSO.		P
	The power-generating plant must at least comply with the corresponding requirements of the applicable standard EN	Q(U) control mode, voltage	Р

Telefax : +86 20 38320478

Belgium Deviation C10/11 ed2.2, 2021				
Clause	Requirement + Test	Result – Remark	Verdict	
	50549-1 or EN 50549-233 (edition 2019, see clause 4.7.2 « Voltage support by reactive power ») taking the modifications and additional information specified hereunder into account. It is usually the power-generating unit itself that meets this requirement, which is assessed at the time of the homologation. In the other cases, if for example additional equipment such as a capacitor bank is necessary in combination with the power-generating unit, this will be evaluated by the DSO during the procedure for commissioning.	setting is 0.93Un ~ 0.97Un, 0.93Un for Qmax, 1.03Un ~ 1.07Un, 1.07Un for Qmin		
	For a power-generating plant with a maximum power ≤ 250 kVA connected to the high-voltage distribution network, the DSU may decide to comply to the equivalent requirements of EN 50549-1 rather than those of EN 50549-2.		Р	
	The reactive power capability shall be evaluated at the terminals of the power-generating unit (including, when applicable, the step-up transformer specific to the power-generating unit).		Ρ	
	The real reactive power capabilities of the power-generating unit at the terminals should be communicated to the DSO. This can be done during the process of homologation.		N/A	
	If the capabilities exceed the minimum requirement, and as far as this has only limited technical and economic impact 34, the DSU is not allowed to refuse without justification the DSO to make use of the reactive power capability (this is not applicable to a small power-generating plant (as defined in chapter 4)).		N/A	
	The settings of the control mode must be protected from unpermitted interference (e.g. by a password or seal).		Р	
D.7.1.1	Specific for a small power-generating plant		N/A	
	 By default, the power generation unit must operate according to the following rules: When the voltage ≤ 105 % Un : cos phi = 1 (Q=0) When the voltage > 105 % Un : free operation with 1 ≥ cos phi > 0,9 under-excited. (no overexcited operation allowed) 		N/A	
D.7.1.2	Specific for another (not small) power-generating plant		Р	
	If applicable, the details of the reactive power control mode to be activated in the power-generating unit shall be provided by the DSO during the installation procedure. This setting might be reviewed by the DSO during the lifetime of the power-generating module.	The power factor set to 0.8 under- excited~0.8 over-excited	Р	
	If the power-generating plant is connected to the high voltage distribution network, it may be necessary to use additional resources such as, for example, a capacitor bank to meet the previous requirements related to the supply of reactive power. If the power-generating unit is disconnected, they must be disconnected as well.	Considered in final installation	N/A	
	For a synchronous power-generating unit that is part of a power-generating module with a maximum power of ≥ 1 MW		N/A	

I TOULCE DEIVICE

	Belgium Deviation C10/11 ed2.2, 2021			
Clause	Requirement + Test	Result -	- Remark	Verdict
	(type B according to NC RfG), the following specific requirement is also applicable [NC RfG Art 17 2 (b)] :			
	Alternatively to the Q(U) control mode specified above, a synchronous power-generating unit of type B (power ≥ 1 MW) shall be equipped with a permanent automatic excitation control system that can provide constant alternator terminal voltage at a selectable setpoint without instability over the entire operating range of the synchronous power-generating module. When the setpoint gives rise to a reactive power exchange beyond the capability requirements above, the reactive power exchange may be kept at the limits of the required capability.			N/A
	The setpoint must be selectable in the continuous operating voltage range (see section D.4.3) and is given by the DSO.			N/A
	The DSO can give the required instructions to make the selection of the setpoint possible remotely by the DSO's control center (see § 7.13), respecting the applicable regional legal framework.			N/A
D.7.2	Voltage related active power reduction P(U)	See ap table	pendix	Р
	Voltage relating active power reduction is allowed and even recommended in order to avoid disconnection due to the operation of the overvoltage protection. When implemented, the power-generating unit must comply with the relevant requirements of the applicable standard EN 50549-1 or EN50549-2 (edition 2019, see clause 4.7.3 « Voltage related active power reduction »).		tting:	Р
	The figure below shows an example of the implementation of this function. Figure 15 - Example curve for P(U)			Р
D.7.3	Provision of additional fast reactive current during faults and voltage steps [NC RfG Art 20 2.(b)]			N/A
	This Section is only applicable to non-synchronous power- generating units connected to a high voltage distribution network and are not part of a small power-generating plant.			N/A
	For power-generating units that are part of a power- generating module with a maximum power<1 MW, there is no capability requirement. However, if such a generating module has the capability to provide additional fast reactive current during faults and voltage steps, this function must be deactivated by default.			N/A
	Power-generating units that are part of a power-generating module with a maximum power ≥ 1 MW must comply with the relevant requirements of the standard EN 50549-2 (edition 2019, see clause 4.7.4.2.1 « Voltage support during faults and voltage steps »), taking the additional information specified in this Section into account. By default, this function must be deactivated.			N/A
	A directly connected asynchronous machine cannot provide voltage support in a controlled manner with regard to short			N/A

Telephone : +86 20 38320668 Telefax : +86 20 38320478

	Belgium Deviation C10/11 ed2.2, 2021		-
Clause	Requirement + Test	Result – Remark	Verdict
	circuit currents as a consequence of faults or when there are sudden voltage variations. The DSO will include these elements in its assessment of the demand for connection.		
D.8	Connection and reconnection [NC RfG Art 13 7 + Art 14 4]		Р
	The power-generating unit must comply with the relevant requirements of the applicable standard EN 50549-1 or EN 50549-2 (edition 2019, see clause 4.10 « Connection and starting to generate electrical power ») taking the additional information specified hereunder into account.		P
	Connection and reconnection after tripping of the interface protection relay is subject to the conditions listed in the table hereunder. These settings are different than the default settings of EN 50549-1 and EN 50549-2. Table 16 – Conditions for automatic connection and reconnection	The connection and reconnection default time is set to 60 s The maximum active power increase gradient of reconnection and connection is selected to 10 %/min and tested	Ρ
	The automatic connection and reconnection is allowed if the abovementioned conditions are met.		Р
	If, at the power-generating unit connected to the HV distribution network, no distinct sets of conditions can be applied, it is not possible to make a distinction between the two connection modes, the conditions must be chosen such as they meet both sets of conditions.		N/A
D.9	Ceasing and reduction of active power on set point		Р
	This clause is not applicable to the backup power systems specified in §2.2.1.		Р
D.9.1	Ceasing active power [NC RfG Art 13 6]	See appendix table	Р
	The power-generating unit must comply with the relevant requirements of the applicable standard EN 5054-1 or EN 50549-2 (edition 2019, see clause 4.11.1 « Ceasing active power ») taking into account the additional information specified hereunder.		Р
	In brief, the requirements in the standards are the following : For modules with a power > 800 W, a logic interface to cease the production of active power within 5 seconds after receiving the instruction is required. Remote operation is optional		P
	Respecting the regional regulatory provisions, the DSO can request additional equipment for a remote operation of this logic interface.		P

	Belgium Deviation C10/11 ed2.2, 2021		
Clause	Requirement + Test	Result – Remark	Verdict
	Unless defined otherwise by the DSO, this logic interface is based on a contact rather than using a communicated protocol.		
D.9.2	Reduction of active power on set point [NC RfG Art 14 2.]		N/A
	The requirement of this Section is applicable only to the power-generating units that are part of:		N/A
	 a power-generating module with a maximum power of ≥ 1 MW 		
	• a power-generating plant with a maximum power of > 250 kVA, if the DSO so requires, in accordance with the regional regulations.		
	The power-generating module must comply with the relevant requirements of the applicable standard EN 50549-1 or EN 50549-2 (edition 2019, see clause 4.11.2 « Reduction of active power on set point ») taking into account the additional information specified hereunder. Generally, the power- generating unit complies with this requirement, which is assessed when homologated. Otherwise, if, for example, additional equipment such as a capacitor bank is required in combination with the power-generating unit, this will be evaluated by the DSO during the commissioning procedure.		N/A
	 In brief, the requirements in the standard are the following: For type B modules: The settings of the limit must be possible with a maximum increment of 10%. Reduction of the power generation to the respective limit in a range of maximum 0,66 %Pn/ s and of minimum 0,33 %Pn/ s Disconnection of the network is allowed when below minimum regulating level Remote operation is optional 		N/A
	Depending of the modalities specified in section D.10 hereafter, the DSO can request additional equipment for a remote operation of this reduction.		N/A
D.10	Communication – Remote monitoring and control [NC RfG Art 14 5.d)]		N/A
	 The requirements of this Section are applicable only to the power-generating units that are part of: a power-generating module with a maximum power ≥ 1 MW a power-generating plant with a maximum power > 250 kVA, if so required by the DSO, respecting the regional regulatory provisions. 		N/A
_	This paragraph is not applicable to backup power systems as defined in §2.2.1. However, special attention must be paid to § 7.12 Special supplemental requirement regarding backup power systems		N/A
	The power-generating unit must have the necessary functionalities to meet the requirements of § 7.13 concerning the communication (remote control and monitoring).		N/A

Annex D	D.3	Integrat	ed auto	omatic s	sepa	aration s	system	1						Р
			Fun	ction			Trip	o set	ting					
			Ove	rvoltage 10	0 min	mean) V + delay	10 % *					
			Ove	rvoltage				230 V +15 % no delay*						
			Und	ervoltage			230	230 V -20 % no delay*				1		
			Ove	Overfrequency			51,	51,5 Hz no delay*						
			Und	Underfrequency				5 Hz delay				-		
			LoM	LoM					g to EN 62	2116		-		
			0		uired t	that no time o o initiate the								
			Annexe	e C.1: S	ettin	igs of the	e autor	nati	c separ	ation	syst	tem		
					1				2			3	3	
			Va	alue (V)	Ti	me (ms)	Valu (V		Tim (ms			Value (V)		Time (ms)
L1-N	1	UV leve 0.80Un	1	82.80		50.70	183.	15	42.4	10		182.95		50.60
voltag	ge	OV level 1.15un		64.25		64.80	264.	82	67.0)5		264.40		67.80
Voltage	moni	toring for 1	0-min-r	nean-va	alue:	OV Lev	el 1							
Test						st be with d at Un f			fterwar	ds th	e vo	the voltage i Itage is raise	ed to	0 108%.
Test procedui (for U>)	re	b) The vThe sc) The v	oltage i witch of oltage i	s mainta ff should s mainta	aine d not aine	d at Un f t be activ d at 106	or 600 /ated. % Un f	is, a for 6	600s, af			Itage is raise the voltage i		
procedui	re	b) The vThe sc) The v	oltage i witch of oltage i	s mainta ff should s mainta	aine d not aine	d at Un f t be activ	or 600 /ated. % Un f	is, a for 6	600s, af			ltage is raise		
procedui	ed	b) The v The s c) The v 114%	oltage i witch of oltage i . The sv a off	s mainta ff should s mainta	aine d not aine f sho	d at Un f t be activ d at 106 puld be v Switch	or 600 vated. % Un f vithin 2 b off	s, a for 6 225s	600s, af	terwa	ards	Itage is raise	is ra	
procedur (for U>) Applie	ed se	b) The v The s c) The v 114%	oltage i witch of oltage i . The sv a off	s mainta ff should s mainta witch of	aine d not aine <u>f sho</u> 3)	d at Un f t be activ d at 106 puld be v	for 600 /ated. % Un 1 vithin 2 b off No)	s, a for 6 225s	600s, af s-375s.	terwa	ards tch c	the voltage i	is ra	ised to
procedur (for U>) Applie phas	ed Se N	b) The v The s c) The v 114% Switch (Yes/N Yes	oltage i witch of oltage i . The sv a off	s mainta ff should s mainta witch off Time (s	aine d not aine <u>f sho</u> 3)	d at Un f t be activ d at 106 buld be v Switch (Yes/f	for 600 /ated. % Un 1 vithin 2 b off No)	s, a for 6 225s	600s, af s-375s. ne (s)	terwa	ards tch c	the voltage i the voltage i c off (Yes/No)	is ra	ised to Time (s)
procedur (for U>) Applie phas L1-N	ed Se N	b) The v The s c) The v 114% Switch (Yes/N Yes	oltage i witch of oltage i . The sv a off	s mainta ff should s mainta witch off Time (s	aine d not aine <u>f sho</u> 3)	d at Un f t be activ d at 106 buld be v Switch (Yes/f	for 600 /ated. % Un 1 vithin 2 b off No)	is, a for 6 225s Tin	600s, af s-375s. ne (s)	terwa	ards tch c	the voltage i the voltage i c off (Yes/No)	is ra	ised to Time (s)
procedui (for U>) Applie phas L1-N	ed Se N	b) The v The s c) The v 114% Switch (Yes/N Yes	oltage i witch of oltage i . The s ^r a off o)	s mainta ff should s mainta witch off Time (s 455.11	aine d not aine f sho s)	d at Un f t be activ d at 106 buld be v Switch (Yes/f	for 600 /ated. % Un 1 vithin 2 b off No)	is, a for 6 225s Tin	600s, af s-375s. ne (s) 	Swi	tch c	the voltage i the voltage i c off (Yes/No) Yes	is ra	ised to Time (s)
procedur (for U>) Applie phas L1-N Frequen	ed se N icy m	b) The v The s c) The v 114% Switch (Yes/N Yes	oltage i witch of oltage i . The s ⁻ a off o) Value	s mainta ff should s mainta witch off Time (s 455.11	aine d not aine <u>f sho</u> s) 1 Tim	d at Un 1 t be activ d at 106 buld be v Switch (Yes/I No	For 600 vated. % Un f vithin 2 b off voff Value	s, a for 6 225s Tin	600s, af s-375s. ne (s) 2 Time	Swi	tch c	the voltage i the voltage i off (Yes/No) Yes	is ra	ised to Time (s) 371.68
procedui (for U>) Applie phas L1-N Frequen	ed se N icy m icy m	b) The v The s c) The v 114% Switch (Yes/N Yes onitoring	oltage i witch of oltage i . The s a off o) Value 47	s mainta ff should s mainta witch off Time (s 455.11 1 e (Hz)	aine d not aine f sho \$) 1 Tim 4	d at Un f t be activ d at 106 build be v Switch (Yes/f No e (ms)	For 600 vated. % Un f vithin 2 b off No) Value (Hz)	s, a for (225s Tin	600s, af s-375s. ne (s) 2 Time (ms)	swi	tch c	the voltage i the voltage i off (Yes/No) Yes 3 Value (Hz)	is ra	ised to Time (s) 371.68 Time (ms)
Procedur (for U>) Applie phas L1-N Frequen Test procedu (for f>,	ed se N icy m icy m t ure f<)	b) The v The s c) The v 114% Switch (Yes/N Yes onitoring	oltage i witch of oltage i . The s a off o) Value 47 51	s mainta ff should s mainta witch off Time (s 455.11 1 e (Hz) .50 .52	aine d not aine f sho 5) 1 Tim 4!	d at Un 1 t be active d at 106 build be v Switch (Yes/f No e (ms) 5.80 9.05	For 600 /ated. % Un f vithin 2 b off No) Value (Hz) 47.50	s, a for (225s Tin	600s, af s-375s. ne (s) 2 Time (ms) 55.80	swi	tch c	the voltage is the voltage i off (Yes/No) Yes 3 Value (Hz) 47.49	is ra	ised to Time (s) 371.68 Time (ms) 49.55
Procedur (for U>) Applie phas L1-N Frequen Test procedu (for f>,	ed se N icy m ture f<) ted a	b) The v The s c) The v 114% Switch (Yes/N Yes onitoring f< f> utomatic s лт (% Re EUT Lc	oltage i witch of oltage i . The s a off o) Value 47 51	s mainta ff should s mainta witch off Time (s 455.11 1 e (Hz) .50 .52	aine d not aine f sho 5) 1 Tim 4! 59 8	d at Un 1 t be active d at 106 build be v Switch (Yes/f No e (ms) 5.80 9.05	ior 600 /ated. % Un f within 2 b off NO) Value (Hz) 47.50 51.57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	rs, a for 6 225s Tin Tin 2 2 3 1 1 1 1 1	600s, af s-375s. ne (s) 2 Time (ms) 55.80	Swi	tch c	the voltage is the voltage i off (Yes/No) Yes 3 Value (Hz) 47.49	is ra	ised to Time (s) 371.68 Time (ms) 49.55
Applie phas L1-N Frequen Test procedu (for f>, Integrat	ed se N hcy m ture f<) ted a PEL of ra	b) The v The s c) The v 114% Switch (Yes/N Yes onitoring f< f> utomatic s лт (% Re EUT Lc	oltage i witch of oltage i . The s a off o) Value 47 51 separat	s mainta ff should s mainta witch off Time (s 455.11 1 e (Hz) 5.50 .52 :ion sys	aine d not aine f sho 5) 1 Tim 4! 59 8	d at Un 1 t be active d at 106 build be v Switch (Yes/N No e (ms) 5.80 9.05 6 (LoM) Q _{AC} (% of	ior 600 /ated. % Un f within 2 b off NO) Value (Hz) 47.50 51.57 % Ru % Ru	Tin 225s Tin 225s 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	500s, af s-375s. ne (s) 2 Тіте (ms) 55.80 69.05	Swi	tch c	the voltage is the voltage i off (Yes/No) Yes 3 Value (Hz) 47.49 51.51	is ra	ised to Time (s) 371.68 Time (ms) 49.55 81.80
Procedur (for U>) Applie phas L1-N Frequen Test procedu (for f>, Integrat No.	ed se N icy m t ure f<) ted a of ra	b) The v The s c) The v 114% Switch (Yes/N Yes onitoring f< f> utomatic s σ(% Re EUT Lc ting) c	oltage i witch of oltage i . The s ⁻ a off o) Value 47 51 separat eactive ad (% f Q _L)	s mainta ff should s mainta witch off Time (s 455.11 1 e (Hz) 5.50 .52 ion sys Pac (f of nomin	aine d not aine f sho 5) 1 Tim 4! 59 8	d at Un f t be activ d at 106 buld be v Switch (Yes/f No e (ms) 5.80 9.05 6 (LoM) Q _{AC} (% of nomina	ior 600 /ated. % Un f vithin 2 b off No) Value (Hz) 47.50 51.57 x o n n n n n n n n n n n n n	225s Tin 225s Tin 2 2 2 37	600s, af s-375s. ne (s) 2 Тіте (ms) 55.80 69.05 Реυт (W)	Swi	tch c	the voltage is the voltage i off (Yes/No) Yes 3 Value (Hz) 47.49 51.51 V _{DC} (V)	is ra	ised to Time (s) 371.68 Time (ms) 49.55 81.80 Remarks Test A at
procedui (for U>) Applie phas L1-N Frequen Test procedu (for f>, Integrat No.	ed se N icy m t ure f<) ted a of ra	b) The v The s c) The v 114% Switch (Yes/N Yes onitoring f< f> utomatic s JT (% Re EUT LC ting) c	oltage i witch of oltage i . The s ⁻ a off o) Value 47 51 separat eactive ad (% f Q _L)	s mainta ff should s mainta witch off Time (s 455.11 1 e (Hz) 5.50 .52 ion sys Pac (' of nomin 0	aine d not aine f sho 5) 1 Tim 4! 59 8	d at Un f t be active d at 106 build be v Switch (Yes/f No e (ms) 5.80 9.05 6 (LoM) Qac (% of nomina 0	ior 600 /ated. % Un f within 2 b off NO) Value (Hz) 47.50 51.5' 0 10 68 0 68	as, a for 6 225s Tin Tin 2 2 37 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	600s, af s-375s. ne (s) 2 Time (ms) 55.80 69.05 PEUT (W) 5930	Swi	tch c	the voltage is the voltage i off (Yes/No) Yes 3 Value (Hz) 47.49 51.51 V _{DC} (V) 58.0	is ra	ised to Time (s) 371.68 Time (ms) 49.55 81.80 Remarks Test A at BL Test A at

TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch, TÜV SÜD Group 5F, Communication Building, 163 Pingyun Rd, Huangpu Ave. West,Guangzhou, 510656, P.R.China

									Product Service
5	100	100	0	-5	860	5827	0.97	58.0	Test A at IB
6	100	100	0	+5	747	5812	1.04	58.0	Test A at IB
7	100	100	+5	-5	720	5804	0.93	58.0	Test A at IB
8	100	100	+5	0	549	5839	0.96	58.0	Test A at IB
9	100	100	+5	+5	799	5853	0.99	58.0	Test A at IB
10	100	100	+5	+10	255	5823	1.01	58.0	Test A at IB
11	100	100	-10	+10	290	5847	1.16	58.0	Test A at IB
12	100	100	-5	+10	295	5841	1.10	58.0	Test A at IB
13	100	100	0	+10	280	5842	1.05	58.0	Test A at IB
14	100	100	+10	+10	266	5808	0.96	58.0	Test A at IB
15	100	100	+10	+5	716	5827	0.94	58.0	Test A at IB
16	100	100	+10	0	409	5801	0.91	58.0	Test A at IB
17	100	100	+10	-5	628	5785	0.89	58.0	Test A at IB
18	100	100	+10	-10	813	5859	0.88	58.0	Test A at IB
19	100	100	+5	-10	332	5820	0.91	58.0	Test A at IB
20	100	100	0	-10	809	5824	0.96	58.0	Test A at IB
21	100	100	-5	-10	515	5836	1.00	58.0	Test A at IB
22	100	100	-10	-10	666	5831	1.05	58.0	Test A at IB
23	100	100	-10	-5	372	5813	1.08	58.0	Test A at IB
24	100	100	-10	0	808	5867	1.11	58.0	Test A at IB
25	100	100	-10	+5	555	5820	1.14	58.0	Test A at IB
26	66	66	0	0	685	3809	1.00	51.0	Test B at BL
27	66	66	0	-5	526	3782	0.98	51.0	Test B at IB
28	66	66	0	-4	760	3810	0.99	51.0	Test B at IB
29	66	66	0	-3	621	3780	0.98	51.0	Test B at IB
30	66	66	0	-2	756	3781	0.99	51.0	Test B at IB
31	66	66	0	-1	656	3807	0.99	51.0	Test B at IB
32	66	66	0	1	843	3807	1.00	51.0	Test B at IB
33	66	66	0	2	458	3802	1.01	51.0	Test B at IB

Project No: 64.290.23.30723.01 Rev.: 00 Date: 2023-06-29 Page: 2 of 58

Telephone : +86 20 38320668 Telefax : +86 20 38320478 TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch, TÜV SÜD Group 5F, Communication Building, 163 Pingyun Rd, Huangpu Ave. West,Guangzhou, 510656, P.R.China

									FIDUUCI Service
34	66	66	0	3	397	3805	1.01	51.0	Test B at IB
35	66	66	0	4	503	3805	1.02	51.0	Test B at IB
36	66	66	0	5	293	3799	1.02	51.0	Test B at IB
37	33	33	0	0	264	1873	1.00	42.1	Test C at BL
38	33	33	0	-5	277	1863	0.98	42.1	Test C at IB
39	33	33	0	-4	335	1862	0.99	42.1	Test C at IB
40	33	33	0	-3	354	1865	0.99	42.1	Test C at IB
41	33	33	0	-2	262	1871	0.99	42.1	Test C at IB
42	33	33	0	-1	358	1871	1.00	42.1	Test C at IB
43	33	33	0	1	301	1870	1.01	42.1	Test C at IB
44	33	33	0	2	349	1868	1.01	42.1	Test C at IB
45	33	33	0	3	280	1870	1.02	42.1	Test C at IB
46	33	33	0	4	524	1868	1.02	42.1	Test C at IB
47	33	33	0	5	346	1868	1.03	42.1	Test C at IB
Supplen	nentary info	rmation: tes	t mothed re	efer to IEC	62116:2	2014.			

EN 5				garding sin n and inter		olerance of interface
Amb	ient temperature (°C					26°C
Rela	tive humidity			:		55%
No.	component	Fault	Input (Vdc)	Output (Vac, W)	Test duration	Observation
INV	РСВ					
1.	R478 (Resistance of PV voltage sampling circuit)	O-C	420	230,6000	3min	The fault was applied before operation. After the unit applied the fault, the PV voltage sampling value was incorrect, no fault was detected. No hazard. No damage.
2.	C and E of Q10 (Switch device of PV2 boost circuit)	S-C	420	230,6000	3min	The fault was applied before operation. After the unit applied the fault, the LED was steady red, "PV2 over current" fault was detected. No output voltage. Q10 was damaged, No hazards.
3.	R57 (Drive resistance of Q10 of PV2 drive circuit)	S-C	420	230,6000	3min	The fault was applied before operation. After the unit applied the fault, PV2 circuit was not operated. The unit operated normally. No hazard. No damage.
4.	C and E of Q19 (Switch device of INV circuit)	S-C	420	230,6000	3min	The fault was applied before operation. After the unit applied the fault, the LED was steady red, "INV overcurrent, Grid fast check abnormal, INV inductor current limited, leakage current exceeded" faults were detected. No output voltage. Q18 and Q20 were damaged, no hazards.
5.	R25 (Drive resistance of Q19)	S-C	420	230,6000	3min	The fault was applied before operation. After the unit applied the fault, the LED was steady yellow, "Inverter self-test failed" fault was detected. No output voltage. No hazard. No damage.
6.	R468 (Resistance of bus capacitor voltage sampling circuit)	S-C	420	230,6000	3min	The fault was applied before operation. After the unit applied the fault, the LED was steady red, "Bus capacitor" faults were detected. No output voltage. No hazard. No damage.
7.	R213 (Resistance of grid voltage sampling circuit)	S-C	420	230,6000	3min	The fault was applied before operation. After the unit applied the fault, the LED was steady green. No fault was detected. No hazard. No damage.
8.	R155 (Resistance of load voltage sampling circuit)	S-C	420	230,6000	3min	The fault was applied before operation. After the unit applied the fault, the LED was steady green. No fault was detected. No hazard. No damage.
9.	R102 of HCT3 (PV1 current sampling circuit)	O-C	420	230,6000	3min	The fault was applied before operation. After the unit applied the fault, the LED was steady green. The inverter could not detect the PV1 current. No fault was detected. No hazard. No damage.
10.	R73 of HCT2 (Load current sampling circuit)	O-C	420	230,6000	3min	The fault was applied before operation. After the unit applied the fault, the LED was steady red. "Output over current" fault was detected. No output voltage. No hazard. No damage.

93 of HCT4 Grid current ampling circu oard 65 Orive resistar Q21 of TX3 imary windir 31 Orive resistar U1 of drive Q1) 18 Orive resistar U11 of drive Q6) er board	uit)	S-C S-C S-C	420 420 420	230,60		3min 3min	After th was ste No haz	It was applied before operation. e unit applied the fault, the LED eady green. No fault was detected. ard. No damage.		
65 Orive resistar Q21 of TX3 imary windir 31 Orive resistar U1 of drive Q1) 18 Orive resistar U11 of drive Q6)	nce hg) nce IC				00	3min		It was applied before operation		
Orive resistar Q21 of TX3 imary windir 31 Orive resistar U1 of drive Q1) 18 Orive resistar U11 of drive Q6)	nce hg) nce IC				00	3min		It was applied before operation		
Orive resistar U1 of drive Q1) 18 Drive resistar U11 of drive Q6)	nce IC	S-C	420				was ste	e unit applied the fault, the LED eady green. No fault was detected. ard. No damage.		
Drive resistar U11 of drive Q6)				230,60	00	3min	After th was ste	It was applied before operation. e unit applied the fault, the LED eady green. No fault was detected. ard. No damage.		
r boord	e IC	S-C	420	230,60	00	3min	The fau After th was ste	ard. No damage. It was applied before operation. e unit applied the fault, the LED eady green. No fault was detected. ard. No damage.		
i buaru										
omponent	Fault		ipply ige (V)	Test time	Fuse #		use ent (A)	Observation		
s Phase	S-C		Vd.c.	3min	/		/	The fault was applied before the unit operation, after applied the fault, the LED was steady red, grid relay fault was detected. No output voltage. No hazard. No damage. After removed the fault, the unit operated normally.		
Phase	S-C	420	Vd.c.	3min	/		/	The fault was applied before the unit operation, after applied the fault, the LED was steady red, grid relay fault was detected. No output voltage. No hazard. No damage. After removed the fault, the unit operated normally.		
Phase	S-C	420	Vd.c.	3min	/		/	The fault was applied before the unit operation, after applied the fault, the LED was steady red, grid relay fault was detected. No output voltage. No hazard. No damage. After removed the fault,		
	S-C	420	Vd.c.	3min	/		/	the unit operated normally. The fault was applied before the unit operation, after applied the fault, the LED was steady red, grid relay fault was detected. No output voltage. No hazard. No damage. After removed the fault, the unit operated normally.		
	hase	nase	S-C 420	S.C. 420\/d.c.	S-C 420Vd c 3min	S.C. (20)/d.c. 3min. /	S-C 420V/d c 3min /			

O-C: Open circuit

During the test: Fire do not propagates beyond the PCE;

Equipment do not 60mit molten metal;

Enclosures do not deform to cause non-compliance with the standard.

Annex D.4.1 & D.4.3 Operating frequency range & Continuous operating voltage range							
Frequency range operation test							
			Μ	easured powe	ər		
		Setting	Р	Q	S		
			(W)	(Var)	(VA)		
Test #1		47.5Hz, 85% of Un, 30min, cosφ=1	5012.56	-136.64	5014.42		
Test #2		47.5Hz, 110% of Un, 30imn, cosφ=1	6069.03	-117.21	6070.16		
Test #3		51.5Hz, 85% of Un, 30min, cosφ=1	5115.46	-81.41	5116.11		
Test #4	Test #4 51.5Hz, 110% of Un, 30min, cosφ=1 6078.34 -39.11						
Supplementary inf	forma	tion: For the test, the LFSM functionis disab	ed.				

Annex D.4.2	Maximum	admissible powe	r reduction in case of underfrequ	iency	Р
Test sequence	Freq (Hz)	Measured active output power P _{measure} (W)	The calculated active output power as per feature curve P _{minimum} (W)	higher tha	f P _{measure} (W) n P _{minimum} ? s/No)
1	50.0	6023	6000	Y	es
2	49.5	6033	6000	Y	es
3	49.0	6022	6000	Y	es
4	48.5	5944	5940	Y	es
5	48.0	5884	5880	Y	es
6	47.5	5841	5820	Y	es

Annex D.5.1	Rat	e of change of frequency (RoCoF) immunity		Р
RoCoF operat	tion t	est, +/-2.0Hz/s for smooth time window of 0.5s		-
		Setting	Disconnec Ro(tion during CoF
Point #1		50.0Hz to 51.0Hz, +2.0Hz/s for 0.5s, 85% of Un, cosφ=1 (stay 0 second, to Test #2)	No Disconnection	
Point #2		51.0Hz to 51.5Hz, +2.0Hz/s for 0.5s, 85% of Un, cosφ=1 (stay 1 second, to Test #3)	No Disconnection	
Point #3		51.5Hz to 51.0Hz, -2.0Hz/s for 0.5s, 85% of Un, cosφ=1 (stay 5 second, to Test #4)	No Disco	onnection
Point #4		51.0 to 50.0Hz, -2.0Hz/s for 0.5s, 85% of Un, cosφ=1 (stay 5 second, to Test #5)	No Disco	onnection
Point #5		50.0Hz to 49.0Hz, -2.0Hz/s for 0.5s, 85% of Un, cosφ=1 (stay 0 second, to Test #6)	No Disco	onnection
Point #6		49.0Hz to 47.5Hz, -2.0Hz/s for 0.5s, 85% of Un, cosφ=1 (stay 1 second, to Test #7)	No Disco	onnection
Point #7		47.5Hz to 49.0Hz, +2.0Hz/s for 0.5s, 85% of Un, cosφ=1	No Disco	onnection
	Active Power(W)	5000.00 4500.00 4000.00 3500.00 3000.00 50.01 57 05 59 08 56 01 57 09 57 08 54 09 52 08 50 50 01 17 75 09 52 08 56 01 17 17 17 18 19 17 18 19 10 18 1		
Point #8		(stay 0 second, to Test #9)	No Disco	onnection
Point #9		51.0Hz to 51.5Hz, +2.0Hz/s for 0.5s, 100% of Un, cosφ=1 (stay 1 second, to Test #10)	No Disco	onnection
Point #10		51.5Hz to 51.0Hz, -2.0Hz/s for 0.5s, 100% of Un, cosφ=1 (stay 5 second, to Test #11)	No Disco	onnection
Point #11	Point #11 51.0 to 50.0Hz, -2.0Hz/s for 0.5s, 100% of Un, cosφ=1 (stay 5 second, to Test #12) No Disconnecti			
Point #12		50.0Hz to 49.0Hz, -2.0Hz/s for 0.5s, 100% of Un, cosφ=1 (stay 0 second, to Test #13)	No Disco	onnection
Point #13		49.0Hz to 47.5Hz, -2.0Hz/s for 0.5s, 100% of Un, cosφ=1 (stay 1 second, to Test #14)	No Disco	onnection
Point #14		47.5Hz to 49.0Hz, +2.0Hz/s for 0.5s, 100% of Un, cosφ=1	No Disco	onnection

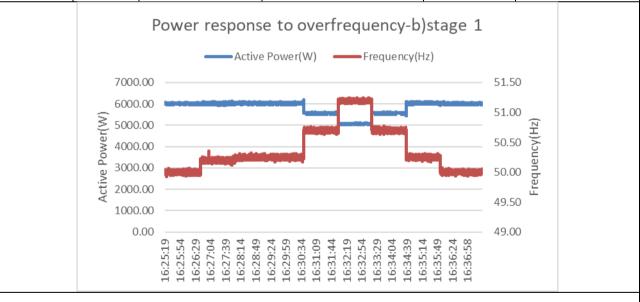
Annex D.6.1 Power response to overfrequency								
a) Over-frequency regulation, with f1=50.2Hz, gradient s=5%								
Stage 1: Inverter DC input available power is set to get 100% of maximum active output power till the end of the test. The active power value shall not be deviated from the required value calculated from the feature curve (a gradient of 40% of P _M per hertz) for more than 10% Pmax. $P_M = \underline{6038 W}$, 10% Pmax= $\underline{600 W}$, Intentional delay time: $\underline{0.15 s}$ (should ≤2s)								
Test sequence Freq (Hz)		Measured active output power P _{measure} (W)	The calculated active output power as per feature curve P _{shall} (W)	Deviation of P _{measure} and P _{shall} (W)	Deviation within 10% Pmax (Yes/No)			
1	50.00	6029						
2	50.20	6038						
3	50.25	5983	5917	66	Yes			
4	50.70 4878 483			48	Yes			
5	51.20 3653		3623	30	Yes			
6	50.70	50.70 4878 4830 48		Yes				
7	50.25	5981	5917	64	Yes			
8	50.00	50.00 6020						
	7000 6000 5000 4000 3000 1000 0				Frequency(Hz)			

Stage 2: Inverter DC input available power is set to 50% of maximum active output power first. After the inverter step into frequency range above 50.2Hz, the Inverter available input power is set to 100% of maximum active output. The output active power should not be changed. When the Inverter step back below the frequency 50.2Hz, the output active power should arise with a gradient of 10% Pmax per minute. $P_M = \underline{3025 W}$, 10% Pmax= $\underline{600 W}$, Intentional delay time: $\underline{0.15 s}$ (should $\leq 2s$)

Test sequence	Freq (Hz)	Measured active output power P _{measure} (W)	The calculated active output power as per feature curve P _{shall} (W)	Deviation of P _{measure} and P _{shall} (W)	Deviation within 10% Pmax (Yes/No)
1	50.00	3016			
2	50.20	3025			

Telephone : +86 20 38320668 Telefax : +86 20 38320478 TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch, TÜV SÜD Group 5F, Communication Building, 163 Pingyun Rd, Huangpu Ave. West,Guangzhou, 510656, P.R.China

Rev.: 00 Date: 2023-06-29 Page: 5 of 58			Telefax	: +86 20 383	20478	Guangzhou Branch, 5F, Communication Huangpu Ave. West	TÜV SÜD Grou Building, 163 Pi	ip ngyun Rd,
sequence Project No: 64.290	Freq (Hz)		measure (W)	ne : +86 20 3	(s)	TÜV SÜD Certificatio	(≤ 20s	3)
Test Test		Maggurad	n frequency sta active output		50.20Hz, sic dead	-	%, P=50% Response t	
			Active powe					
	0	00 19:15:02 19:15:53 19:16:43 19:17:34	19:18:24 19:19:15 19:20:06 19:20:56 19:21:47 19:21:47	19:23:28 19:24:18 19:25:09	19:26:50 19:26:50 19:27:40 19:28:31	19:29:22 19:30:12 19:31:03 19:31:53	19.00	
	1000	.00				4	9.50	
5000.00 4000.00 3000.00 2000.00					Erequency(Hz			
	7000 6000 2 5000	.00			-1 2 3	5	51.50 51.00 P	
Power response to overfrequency-a)stage 2								
22	50.00	7.0min	6083			6		Yes
21	50.00	6.5min	6080			310		Yes
20	50.00	6.0min	5925 474			Yes		
19	50.00	5.5min	5688			434		Yes
18	50.00	5.0min			Yes			
17	50.00	4.5min	5246			404	Yes	
16	50.00	4.0min	5044			408		Yes
14	50.00	3.5min	4596			404		Yes
13	50.00	2.5min 3.0min	4394 4596			406		Yes
12	50.00	2.0min 2.5min	4161 4394			420		Yes Yes
11 12	50.00 50.00	1.5min 2.0min	3951 4161			530 420		Yes Yes
10 11	50.00	1.0min	3686 3951			414		Yes Yes
9	50.00	0.5min	3479			326		Yes
8	50.00	0.0min	3316			-		-
Test sequence	Freq (Hz)	Time after step back from 50.2Hz t (min)	Measured a output power (W)			e during next 1 min	pov <109	nt of arising ver∆P/t % Pmax es/No)
8	50.00		ow table	-	-			
7	50.25	2973		29	65	8		Yes
6	50.70	24	25	24	20	5		Yes
5	51.20	18	18	18	15	3		Yes
4	50.70	24	28	24	20	8		Yes


			(≤ 2s)	
1	50.00	3029	-	-
2	50.20	3026	-	-
3	51.20	1820	1.00	1.35

b) over-frequency regulation, with f1=50.2Hz, gradient s=12%

Stage 1: Inverter DC input available power is set to get 100% of maximum active output power till the end of the test. The active power value shall not be deviated from the required value calculated from the feature curve (a gradient of 16.7% of P_M per hertz) for more than 10% Pmax.

P _M = <u>6034 W</u> , 10% Pmax= <u>600 W</u> , Intentional delay time: <u>0.15 s</u> (should ≤2s)
--

$1 \text{ M} = \underline{0004 \text{ W}}$, 1070 1 max= $\underline{000 \text{ W}}$, methodial delay time: $\underline{0.103}$ (should =23)							
Test sequence	Freq (Hz)		The calculated active output power as per	Deviation of P _{measure} and	Deviation within 10% Pmax		
		P _{measure} (W)	feature curve P _{shall} (W)	P _{shall} (W)	(Yes/No)		
1	50.00	6016					
2	50.20	6034					
3	50.25	6038	5984	54	Yes		
4	50.70	5579	5530	49	Yes		
5	51.20	5070	5026	44	Yes		
6	50.70	5580	5530	50	Yes		
7	50.25	6040	5984	56	Yes		
8	50.00	6019					

Stage 2: Inverter DC input available power is set to get 50% of maximum active output power first. After the Inverter step into frequency range above 50.2Hz, the Inverter available input power is set to 100% of maximum active output. The output active power should not be changed. When the Inverter step back below the frequency 50.2Hz, the output active power should arise with a gradient of 10% Pmax per minute. $P_M = \underline{3029 \text{ W}}$, 10% Pmax= $\underline{600 \text{ W}}$, Intentional delay time: $\underline{0.15 \text{ s}}$ (should ≤2s)

Test sequence	Freq (Hz)	Measured active output power P _{measure} (W)	The calculated active output power as per feature curve P _{shall} (W)	Deviation of P _{measure} and P _{shall} (W)	Deviation within 10% Pmax (Yes/No)
1	50.00	3029			
2	50.20	3029			
3	50.25	3028	3004	24	Yes

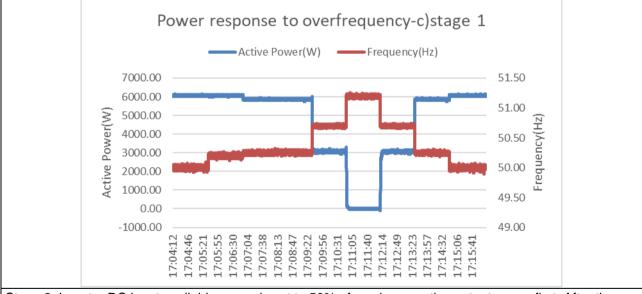
Project No: 64.290.23.30723.01 Rev.: 00 Date: 2023-06-29 Page: 6 of 58 Telephone : +86 20 38320668 Telefax : +86 20 38320478 TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch, TÜV SÜD Group 5F, Communication Building, 163 Pingyun Rd, Huangpu Ave. West,Guangzhou, 510656, P.R.China

					Product Service
4	50.70	2785	2776	9	Yes
5	51.20	2542	2523	19	Yes
6	50.70	2773	2776	-3	Yes
7	50.25	3001	3004	-3	Yes
8	50.00	See below table			
Test sequence	Freq (Hz)	Time after step back from 50.2Hz t (min)	Measured active output power P _{measure} (W)	ΔP Arise during next 1 min	Gradient of arising power∆P/t under 10% Pmax (Yes/No)
8	50.00	0.0min	3156		
8	50.00	0.5min	3385	485	Yes
8	50.00	1.0min	3582	394	Yes
8	50.00	1.5min	3793	422	Yes
8	50.00	2.0min	4029	472	Yes
8	50.00	2.5min	4239	420	Yes
8	50.00	3.0min	4456	434	Yes
8	50.00	3.5min	4677	442	Yes
8	50.00	4.0min	4904	454	Yes
8	50.00	4.5min	5100	392	Yes
8	50.00	5.0min	5339	478	Yes
8	50.00	5.5min	5546	414	Yes
8	50.00	6.0min	5760	428	Yes
8	50.00	6.5min	5984	448	Yes
8	50.00	7.0min	6098	228	Yes
	7000 6000 5000 4000 3000 2000 1000	Active	e to overfrequency-b e Power(W)	Hz) 51.5 51.0 50.5 50.0 49.5 49.0	60 00 00 Frequency(Hz)
		19:35:57 19:35:57 19:37:40 19:37:40 19:38:31 19:40:14 19:41:14 19:41:05	Ave booker Least 19:41:57 19:42:48 19:42:34 19:44:31 19:44:31 19:47:05 19:4	19:51:22 19:51:22 19:52:13 19:53:05	
Test	with active p		ency start point 50.20Hz, g	radient s=12%,	P=50%Pmax
Test			output Instrinsic dead tir		esponse time (s)

Test	Freg (Hz)	Measured active output	Instrinsic dead time (s)	Response time (s)
sequence	1169 (112)	power P _{measure} (W)	(≤ 2s)	(≤ 20s)
1.	50.00	3024	-	-

Project No: 64.290.23.30723.01 Rev.: 00 Date: 2023-06-29 Page: 7 of 58

Telephone : +86 20 38320668 Telefax : +86 20 38320478 TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch, TÜV SÜD Group 5F, Communication Building, 163 Pingyun Rd, Huangpu Ave. West,Guangzhou, 510656, P.R.China

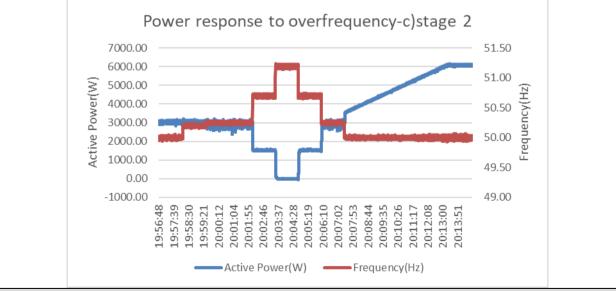


2.	50.20	3028	-	-
3.	51.20	2553	1.10	1.30

c) over-frequency regulation, with f1=50.2Hz, gradient s=2%

Stage 1: Inverter DC input available power is set to get 100% of maximum active output power till the end of the test. The active power value shall not be deviated from the required value calculated from the feature curve (a gradient of 100% of P_M per hertz) for more than 10% Pmax.

	···· <u>·····</u> , ···· ·· ··· ··· ··· ··· ··· ···								
Test sequence	Freq (Hz)	Measured active output power P _{measure} (W)	The calculated active output power as per feature curve P _{shall} (W)	Deviation of P _{measure} and P _{shall} (W)	Deviation within 10% Pmax (Yes/No)				
1	50.00	6078							
2	50.20	6080							
3	50.25	5860	5776	84	Yes				
4	50.70	3076	3040	36	Yes				
5	51.20	4	0	4	Yes				
6	50.70	3071	3040	31	Yes				
7	50.25	5858	5776	82	Yes				
8	50.00	6080							


Stage 2: Inverter DC input available power is set to 50% of maximum active output power first. After the Inverter step into frequency range above 50.2Hz, the Inverter available input power is set to 100% of maximum active output. The output active power should not be changed. When the Inverter step back below the frequency 50.2Hz, the output active power should arise with a gradient of 10% Pmax per minute. $P_M = 3027 \text{ W}$, 10% Pmax= 600 W, Intentional delay time: 0.15 s (should <2s)

$\frac{1}{1} = \frac{1}{1} = \frac{1}$									
Test		Measured active	The calculated active	Deviation of	Deviation within				
sequence	Freq (Hz)	output power	output power as per	Pmeasure and	10% Pmax				
Sequence		Pmeasure (W)	feature curve P _{shall} (W)	P _{shall} (W)	(Yes/No)				
1	50.00	3026							
2	50.20	3027							
3	50.25	2909	2876	33	Yes				
4	50.70	1534	1514	21	Yes				
5	51.20	3	0	3	Yes				

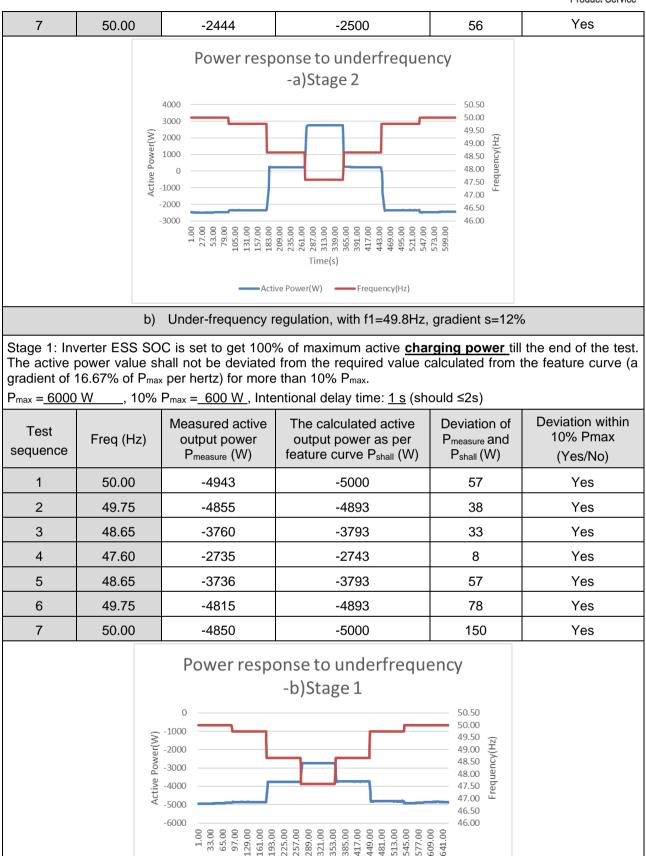
Project No: 64.290.23.30723.01 Rev.: 00 Date: 2023-06-29 Page: 8 of 58 Telephone : +86 20 38320668 Telefax : +86 20 38320478 TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch, TÜV SÜD Group 5F, Communication Building, 163 Pingyun Rd, Huangpu Ave. West,Guangzhou, 510656, P.R.China

6	50.70	1532	1514	19	Yes
7	50.25	2906	2876	30	Yes
8	50.00	See below table			
Test sequence	Freq (Hz)	Time after step back from 50.2Hz t (min)	Measured active output power P _{measure} (W)	ΔP Arise during next 1 min	Gradient of arising power∆P/t under 10% Pmax (Yes/No)
8	50.00	0.0min	3531		
8	50.00	0.5min	3744	426	Yes
8	50.00	1.0min	3972	456	Yes
8	50.00	1.5min	4201	458	Yes
8	50.00	2.0min	4403	404	Yes
8	50.00	2.5min	4632	458	Yes
8	50.00	3.0min	4840	416	Yes
8	50.00	3.5min	5066	452	Yes
8	50.00	4.0min	5278	424	Yes
8	50.00	4.5min	5493	430	Yes
8	50.00	5.0min	5713	440	Yes
8	50.00	5.5min	5956	486	Yes
8	50.00	6.0min	6090	268	Yes
8	50.00	6.5min	6094	8	Yes
8	50.00	7.0min	6084	20	Yes

	Active power reaction time									
Test	Test with active power reduction frequency start point 50.20Hz, gradient s=2%, P=50%Pmax									
Test sequence	Response time (s) (≤ 20s)									
1.	50.00	3029	-	-						
2.	50.20	3028	-	-						
3.	51.20	3	1.20	1.90						

Project No: 64.290.23.30723.01 Rev.: 00 Date: 2023-06-29 Page: 9 of 58 Telephone : +86 20 38320668 Telefax : +86 20 38320478 TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch, TÜV SÜD Group 5F, Communication Building, 163 Pingyun Rd, Huangpu Ave. West,Guangzhou, 510656, P.R.China

I	Name	Echo	Unit	Range	Name	Echo	Unit	Range
16	INV Start Command	0		0~65535	INV Stop Command	0		0~65535
17 I	NV Active Setting	50	%	0~100	PV Active Setting	100	%	0~100
18	Active Change Rate Limit	100		1~30	Enable Island Check	Disable		0~1
	Certification Mode	Disable		0~1	ON -OFF Grid Mode	ON GRID		0~1
20	System Run Mode	attery Firs		0~7	Wake on Lamp Bar	0		0~65535
	Buzzer Respond Time	0	min	0~60	USB Operation	NULL		0~5
	System Mode Set	UPS		0~1	PV Connect Set	Independ		0~1
	Rated Volt.	0	v	208~240	Rated FREQ.	0	Hz	50~60
	ВАТТ Туре	LEAD		0~1	BATT CHG CURR.	100.0	A	0~100
	BATT DISCHG CURR.	120.0	A	0~120	RATT Fousi CHG VOLT	56.4	V	48~57.6
	BATT Float CHG VOLT.	53.5	v	46~55	😑 Freq_Watt OverFreqPowerRate	set		? ×
	BATT DOD	46.0	v	40~57.6	value: 5			
	OFF-GRID SOC Limit	40.0	v %	40~57.0 0~15	varue. 3			
	Power Factor	0.00	70	-0.99~1	-			
	Power Factor	OFF		-0.33~1	-		0	K Cancel
				47.50		50.00	Hz	
	Overfrequency Derating	0.00	Hz	47~52	Freq_Watt OverFreqStartPoint	50.20		
	Freq_Wat tOverFreqCenterPoint	0.00	Hz		Freq_Watt OverFreqEndPoint	51.50	Hz	
	Freq_Watt OverFreqRECVYPoint	50.10	Hz		Freq_Watt OverFreqRECVYTime	1	s	
	Freq_Watt UnderFreqStartPoint	49.80	Hz		Freq_Watt UnderFreqCenterPoint	0.00	Hz	
	Freq_Watt UnderFreqEndPoint	47.50	Hz		Freq_Watt UnderFreqRECVYPoint	49.80	Hz	
		1	s			5	%	
	Freq_Watt UnderFreqRECVYTime				Freq_Watt OverFreqPowerRate			
37 38 S a	Freq_Watt UnderFreqPowerRate Freq_Watt PowerFallSpeed	2 100.0 softwal	% %…	vhere tl	Freq_Watt Overreirouvernate	100.0	۰۰ thre	eshold c
37 38 S a Numb	Freq_Watt UnderFreqPowerRate Freq_Watt PowerFallSpeed Screenshot of the s	2 100.0 softwal	% % re v	vhere tl	Freq_Watt PowerRiseSpeed	100.0	thre	eshold c
37 38 S a Numb	Freq_Watt UnderFreqPowerRate Freq_Watt PowerFallSpeed Screenshot of the s per of arguments in a single line	2 100.0 softwal	% % re v		Freq_Watt PowerRiseSpeed	100.0	thre	
37 38 S a Numb 16 17	Freq_Watt UnderFreqPowerRate Freq_Watt PowerFallSpeed SCREENShOt Of the S ber of arguments in a single line Name INV Start Command INV Active Setting	2 100.0 Softwal	% % re v	Range	Freq_Watt PowerRiseSpeed he over-frequency de Name INV Stop Command PV Active Setting	100.0 erating	thre	Range
37 38 S a Numb 16 17	Freq_Watt UnderFreqPowerRate Freq_Watt PowerFallSpeed Screenshot of the s beer of arguments in a single line Name	2 100.0 softwal 2 \$ Echo 0	% %… (Ce V	Range 0~65535	Freq_Watt PowerRiseSpeed he over-frequency de Name INV Stop Command	100.0 erating Echo 0	Unit	Range 0~65535
37 38 S A Numb 16 17 18	Freq_Watt UnderFreqPowerRate Freq_Watt PowerFallSpeed SCREENShOt Of the S ber of arguments in a single line Name INV Start Command INV Active Setting	2 100.0 softwal 2 \$ Echo 0 50	% %… (Ce V	Range 0~65535 0~100	Freq_Watt PowerRiseSpeed he over-frequency de Name INV Stop Command PV Active Setting	100.0 erating Echo 0 100	Unit	Range 0~65535 0~100
37 38 S a Numb 16 17 18 19	Freq_Watt UnderFreqPowerRate Freq_Watt PowerFallSpeed SCREENShOt Of the S per of arguments in a single line Name INV Start Command INV Active Setting Active Change Rate Limit	2 100.0 Softwal 2 ¢ Echo 0 50 100	% %… (Ce V Unit %	Range 0~65535 0~100 1~30	Freq_Watt PowerRiseSpeed he over-frequency de Name INV Stop Command PV Active Setting Enable Island Check	Echo 0 100.0	Unit	Range
37 38 S a Numb 16 17 18 19 20	Freq_Watt UnderFreqPowerRate Freq_Watt PowerFallSpeed Screenshot of the s er of arguments in a single line Name INV Start Command INV Active Setting Active Change Rate Limit Certification Mode	2 100.0 Softwal Echo 0 50 100 Disable	% %… (Ce V Unit %	Range 0~65535 0~100 1~30 0~1	Freq_Watt PowerRiseSpeed he over-frequency de Name INV Stop Command PV Active Setting Enable Island Check ON -OFF Grid Mode	Echo 0 1000 Echo 0 100 Disable 0N GRID	Unit	Range Image 0~65535 Image 0~100 Image 0~1 Image
37 38 S a Numb 16 17 18 19 20 21	Freq_Watt UnderFreqPowerRate Freq_Watt PowerFallSpeed SCREENShOt Of the s eer of arguments in a single line Name INV Start Command INV Active Setting Active Change Rate Limit Certification Mode System Run Mode	2 100.0 SOFtwal 2 ¢ Echo 50 100 Disable attery Fir	% % Unit %	Range 0~65535 0~100 1~30 0~1 0~7	Freq_Watt PowerRiseSpeed Freq_Watt PowerRiseSpeed Name Name NV Stop Command PV Active Setting Enable Island Check ON -OFF Grid Mode Wake on Lamp Bar	Echo 0 100 0 100 Disable 0 N CRID 0	Unit	Range Image: Constraint of the second s
37 38 S A 16 17 18 19 20 21 22	Freq_Watt UnderFreqPowerRate Freq_Watt PowerFallSpeed SCREENShOt Of the S beer of arguments in a single line Name INV Start Command INV Active Setting Active Change Rate Limit Certification Mode System Run Mode Buzzer Respond Time	2 100.0 SOFtwal 2 + Echo 0 50 100 Disable attery Fir 0	% % Unit %	Range 0~65535 0~100 1~30 0~1 0~7 0~70 0~60	Freq_Watt PowerRiseSpeed Freq_Watt PowerRiseSpeed Name Name Nover-frequency de Nov Stop Command PV Active Setting Enable Island Check ON -OFF Grid Mode Wake on Lamp Bar USB Operation	Echo 0 1000 Disable 0 N GRID 0 NULL	Unit	Range Image: Constraint of the second s
37 38 S a 16 17 18 19 20 21 22 23	Freq_Watt UnderFreqPowerRate Freq_Watt PowerFallSpeed SCREENShot of the s beer of arguments in a single line Name INV Start Command INV Active Setting Active Change Rate Limit Certification Mode System Run Mode Buzzer Respond Time System Mode Set	2 100.0 SOFtwal 2 ¢ Cho 0 50 100 Disable attery Fir 0 UPS	% %···· VInit % %	Range 0~65535 0~100 1~30 0~1 0~7 0~60 0~1	Freq_Watt PowerRiseSpeed he over-frequency de Name INV Stop Command PV Active Setting Enable Island Check ON -OFF Grid Mode Wake on Lamp Bar USB Operation PV Connect Set Rated FREQ. BATT CHG CURR.	Echo 0 1000 Disable 0 NULL Independ	Unit %	Range Image: Constraint of the second s
37 38 S A Numb 16 17 18 19 20 21 22 23 24	Freq_Watt UnderFreqPowerRate Freq_Watt PowerFallSpeed SCREENShOt Of the S Der of arguments in a single line Name INV Start Command INV Active Setting Active Change Rate Limit Certification Mode System Run Mode Buzzer Respond Time System Mode Set Rated Volt.	2 100.0 SOFtwal 2 ¢ Echo 0 50 100 Disable attery Fir 0 UPS 0	% %···· VInit % %	Range 0~65535 0~100 1~30 0~1 0~7 0~60 0~1 208~240	Freq_Watt PowerRiseSpeed Freq_Watt PowerRiseSpeed Name Name NV Stop Command PV Active Setting Enable Island Check ON -OFF Grid Mode Wake on Lamp Bar USB Operation PV Connect Set Rated FREQ. BATT CHG CURR. PATT Enviro CUC VOLT	100.0 Image: The second sec	Unit 9%	Range Image: Constraint of the second s
37 38 38 16 17 18 19 20 21 22 23 24 25	Freq_Watt UnderFreqPowerRate Freq_Watt PowerFallSpeed SCREENShOt Of the S Per of arguments in a single line Name INV Start Command INV Active Setting Active Change Rate Limit Certification Mode System Run Mode Buzzer Respond Time System Mode Set Rated Volt. BATT Type	2 100.0 Softwal 2 ¢ Echo 0 50 100 Disable attery Fir 0 UPS 0 LEAD	% %… CE V Unit % % %	Range 0~65535 0~100 1~30 0~1 0~7 0~60 0~10 0~20~20 0~1	Freq_Watt PowerRiseSpeed he over-frequency de Name INV Stop Command PV Active Setting Enable Island Check ON -OFF Grid Mode Wake on Lamp Bar USB Operation PV Connect Set Rated FREQ. BATT CHG CURR.	100.0 Image: The second sec	Unit 9% Hz A	Range Image: Constraint of the second s
37 38 38 38 38 38 16 16 17 18 19 20 21 22 23 24 25 26	Freq_Watt UnderFreqPowerRate Freq_Watt PowerFallSpeed SCREENShOt Of the S Per of arguments in a single line Name INV Start Command INV Active Setting Active Change Rate Limit Certification Mode System Run Mode Buzzer Respond Time System Mode Set Rated Volt. BATT Type BATT DISCHG CURR.	2 100.0 Softwal Contemporation Contemporat	% % Ye V Unit % % s min V V	Range 0~65535 0~100 1~30 0~1 0~7 0~60 0~1 0~80~240 0~1	Freq_Watt PowerRiseSpeed Freq_Watt PowerRiseSpeed Name Name NV Stop Command PV Active Setting Enable Island Check ON -OFF Grid Mode Wake on Lamp Bar USB Operation PV Connect Set Rated FREQ. BATT CHG CURR. PATT Enviro CUC VOLT	100.0 Image: The second sec	Unit 9% Hz A	Range Image: Constraint of the second s
37 38 S A Number 16 17 18 19 20 21 22 23 24 25 26 27	Freq_Watt UnderFreqPowerRate Freq_Watt PowerFallSpeed SCREENShOt Of the s ser of arguments in a single line Name INV Start Command INV Active Setting Active Change Rate Limit Certification Mode System Run Mode Buzzer Respond Time System Mode Set Rated Volt. BATT Type BATT DISCHG CURR. BATT Float CHG VOLT.	2 100.0 SOFTWAI C.C.	% % VIIIII % % min V V	Range 0~65535 0~100 1~30 0~1 0~7 0~60 0~1 0~200 0~1 0~200 0~1 0~10 0~1 0~1 0~1 0~120 46-55	Freq_Watt PowerRiseSpeed Freq_Watt PowerRiseSpeed Name INV Stop Command PV Active Setting Enable Island Check ON -OFF Grid Mode Wake on Lamp Bar USB Operation PV Connect Set Rated FREQ. BATT CHG CURR. PATT Facula CHC VOLT Freq_Watt OverFreqStartPoint s	100.0 Image: The second sec	Unit 9% Hz A	Range Image: Constraint of the second s
37 38 38 16 17 18 19 20 21 22 23 24 25 26 27 28	Freq_Watt UnderFreqPowerRate Freq_Watt PowerFallSpeed SCREENShOt Of the S Ser of arguments in a single line Name INV Start Command INV Active Setting Active Change Rate Limit Certification Mode System Run Mode Buzzer Respond Time System Mode Set Rated Volt. BATT DISCHG CURR. BATT Float CHG VOLT. BATT DOD	2 100.0 Softwal Content Co	% % % Vinit % % % % % % % % % % % % % % % % % % %	Range 0~65535 0~100 1~30 0~1 0~7 0~60 0~10 0~60 0~10 0~20 0~10 0~20 0~10 0 0~10 0 0~10 0~120 40~57.6	Freq_Watt PowerRiseSpeed Freq_Watt PowerRiseSpeed Name INV Stop Command PV Active Setting Enable Island Check ON -OFF Grid Mode Wake on Lamp Bar USB Operation PV Connect Set Rated FREQ. BATT CHG CURR. PATT Facula CHC VOLT Freq_Watt OverFreqStartPoint s	100.0 Echo 0 100 Disable 0N GRID 0 1Independ 0 100.0 Ector	Unit % Hz A Y	Range 0~65535 0~100 0~1 0~65535 0~1 0~65535 0~1 50~60 0~100 40. c., 6 6 6
37 38 38 38 38 38 38 38	Freq_Watt UnderFreqPowerRate Freq_Watt PowerFallSpeed SCREENShOT Of the S Ser of arguments in a single line Name INV Start Command INV Active Setting Active Change Rate Limit Certification Mode System Run Mode Buzzer Respond Time System Mode Set Rated Volt. BATT Type BATT DISCHG CURR. BATT DISCHG CURR. BATT DOD OFF-GRID SOC Limit	2 100.0 SOFTWAIN 2 0 Choose of the second secon	% % % Vinit % % % % % % % % % % % % % % % % % % %	Range 0~65535 0~100 1~30 0~1 0~7 0~60 0~400 0~400 0~100 0~200 0~200 0~120 46~55 40~57.6	Freq_Watt PowerRiseSpeed Freq_Watt PowerRiseSpeed Name INV Stop Command PV Active Setting Enable Island Check ON -OFF Grid Mode Wake on Lamp Bar USB Operation PV Connect Set Rated FREQ. BATT CHG CURR. PATT Facula CHC VOLT Freq_Watt OverFreqStartPoint s	100.0 Image: The second sec	Unit % Hz A Y	Range Image: Constraint of the second s
37 38 38 38 16 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	Freq_Watt UnderFreqPowerRate Freq_Watt PowerFallSpeed SCREENShOt Of the S ser of arguments in a single line Name INV Start Command INV Start Command INV Active Setting Active Change Rate Limit Certification Mode System Run Mode Buzzer Respond Time System Mode Set Rated Volt. BATT DisCHG CURR. BATT DISCHG CURR. BATT Float CHG VOLT. BATT DOD OFF-GRID SOC Limit Power Factor	2 100.0 Softwal 2 ¢ Echo 0 100 Disable attery Fir 0 UFS 0 UFS 0 120.0 53.5 40.0 5 .0.00	% % % Vinit % % % % % % % % % % % % % % % % % % %	Range 0~65535 0~100 1~30 0~1 0~7 0~60 0~400 0~400 0~100 0~200 0~200 0~120 46~55 40~57.6	Freq_Watt PowerRiseSpeed Freq_Watt PowerRiseSpeed Name INV Stop Command PV Active Setting Enable Island Check ON -OFF Grid Mode Wake on Lamp Bar USB Operation PV Connect Set Rated FREQ. BATT CHG CURR. PATT Facula CHC VOLT Freq_Watt OverFreqStartPoint s	100.0 Echo 0 100 Disable 0N GRID 0 1Independ 0 100.0 Ector	Unit % Hz A Y	Range 0~65535 0~100 0~1 0~65535 0~1 0~65535 0~1 0~60 0~100 40.576 6 6
37 38 38 38 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 31 31 31 31 32 33 34 35 36 37 36 37	Freq_Watt UnderFreqPowerRate Freq_Watt PowerFallSpeed SCREENShOt Of the S ser of arguments in a single line Name INV Start Command INV Active Setting Active Change Rate Limit Certification Mode System Run Mode Buzzer Respond Time System Mode Set Rated Volt. BATT DISCHG CURR. BATT DISCHG CURR. BATT Float CHG VOLT. BATT DOD OFF-GRID SOC Limit Power Factor Cold Mode	2 100.0 Softwal 2 ¢ Echo 0 100 Disable attery Fir 0 UPS 0 UPS 0 120.0 53.5 46.0 5 0.00 OFF	% % Vunit % % % % % % % % % % % % %	Range 0~65535 0~100 1~30 0~1 0~7 0~60 0~1 208~240 0~1 0~120 46~55 40~57.6 0~15 -0.99~1	Freq_Watt PowerRiseSpeed he over-frequency dest Name INV Stop Command PV Active Setting Enable Island Check ON -OFF Grid Mode Wake on Lamp Bar USB Operation PV Connect Set Rated FREQ. BATT CHG CURR. PAT CHG CURR. value: 50.20	100.0 Echo 0 100 Disable 0N CRID 0 NULL Independ 0 100.0 Echo 0 0 NULL Independ 0 100 0 0 0 0 0 0 0 0 0 0 0 0	Unit 9% Hz A Y ?	Range 0~65535 0~100 0~1 0~65535 0~1 0~65535 0~1 0~60 0~100 40.576 6 6
37 38 38 38 38 38 38 38 30 31 32 37 38	Freq_Watt UnderFreqPowerRate Freq_Watt PowerFallSpeed SCREENShOt Of the S ser of arguments in a single line Name INV Start Command INV Active Setting Active Change Rate Limit Certification Mode System Run Mode Buzzer Respond Time System Mode Set Rated Volt. BATT Type BATT DISCHG CURR. BATT Float CHG VOLT. BATT Float CHG VOLT. BATT DOD OFF-GRID SOC Limit Power Factor Cold Mode Overfrequency Derating	2 100.0 Softwall Contemporation Contempora	% % % % % % % % % min %	Range 0~65535 0~100 1~30 0~1 0~7 0~60 0~1 208~240 0~1 0~120 46~55 40~57.6 0~15 -0.99~1	Freq_Watt PowerRiseSpeed he over-frequency dest Name INV Stop Command PV Active Setting Enable Island Check ON -OFF Grid Mode Wake on Lamp Bar USB Operation PV Connect Set Rated FREQ. BATT CHIG CURR. PATE Freq_Watt OverFreqStartPoint s value: 50.20	100.0 100.0 Echo 0 100 Disable 0N GRID 0N WILL Independ 0 100.0 Echo 0N GRID 0N GRID 0N GRID 0 100.0 Echo 0 00	Unit % Hz A Y ?	Range 0~65535 0~100 0~1 0~65535 0~1 0~65535 0~1 0~60 0~100 40.576 6 6
37 1 38 1 38 1 38 1 38 1 38 1 30 1	Freq_Watt UnderFreqPowerRate Freq_Watt PowerFallSpeed SCREENShOt Of the S ser of arguments in a single line Name INV Start Command INV Active Setting Active Change Rate Limit Certification Mode System Run Mode Buzzer Respond Time System Mode Set Rated Volt. BATT Type BATT DISCHG CURR. BATT Float CHG VOLT. BATT Float CHG VOLT. BATT DDD OFF-GRID SOC Limit Power Factor Cold Mode Overfrequency Derating Freq_Wat tOverFreqCenterPoint	2 100.0 Softwal Contemporation Contemporat	% % % % % % % % % min %	Range 0~65535 0~100 1~30 0~1 0~7 0~60 0~1 208~240 0~1 0~120 46~55 40~57.6 0~15 -0.99~1	Freq_Watt PowerRiseSpeed he over-frequency de INV Stop Command PV Active Setting Enable Island Check ON -OFF Grid Mode Wake on Lamp Bar USB Operation PV Connect Set Rated FREQ. BATT CHG CURR. PATT CHG CURR. Patue: 50.20 ralue: 50.20	100.0 100.0 Echo 0 100 Disable 0N GRID 0N MULL Independ 0 100.0 Echo 0K 50.20 51.50	Unit 9% Hz A Hz Hz Hz	Range 0~65535 0~100 0~1 0~65535 0~1 0~65535 0~1 0~60 0~100 40.576 6 6
37 1 38 1 38 1 16 16 17 18 19 20 21 21 22 23 24 25 26 27 23 24 25 26 27 23 30 31 32 33 34	Freq_Watt UnderFreqPowerRate Freq_Watt PowerFallSpeed SCREENShOt Of the S SCREENShOt Of the S Name INV Start Command INV Active Setting Active Change Rate Limit Certification Mode System Run Mode Buzzer Respond Time System Mode Set Rated Volt. BATT DOD OFF-GRID SOC Limit Power Factor Cold Mode Overfrequency Derating Freq_Watt OverFreqRECVYPoint	2 100.0 Softwal Contemporation Contemporat	% % % Vunit % % % % % % % % % % % % %	Range 0~65535 0~100 1~30 0~1 0~7 0~60 0~1 208~240 0~1 0~120 46~55 40~57.6 0~15 -0.99~1	Freq_Watt PowerRiseSpeed he over-frequency dest INV Stop Command PV Active Setting Enable Island Check ON -OFF Grid Mode Wake on Lamp Bar USB Operation PV Connect Set Rated FREQ. BATT CHG CURR. PATE Fault OverFreqStartPoint structure value: 50.20 Freq_Watt OverFreqEndPoint Freq_Watt OverFreqEndPoint Freq_Watt OverFreqEndPoint	100.0 Echo 0 100 Disable 0N GRID 0N Independ 100.0 Echo 00 100 0N GRID 0 100.0 Echo 0 50.20 51.50 1	Unit 9% Hz A Y ?	Range 0~65535 0~100 0~1 0~65535 0~1 0~65535 0~1 0~60 0~100 40.576 6 6
37 38 38 38 38 38 38 38	Freq_Watt UnderFreqPowerRate Freq_Watt PowerFallSpeed SCREENShOt Of the S Ser of arguments in a single line Name INV Start Command INV Active Setting Active Change Rate Limit Certification Mode System Run Mode Buzzer Respond Time System Mode Set Rated Volt. BATT DOD OFF-GRID SOC Limit Power Factor Cold Mode Overfrequency Derating Freq_Watt OverFreqRECVYPoint Freq_Watt UnderFreqStartPoint	2 100.0 Control 100 Control 1	% % % With the second secon	Range 0~65535 0~100 1~30 0~1 0~7 0~60 0~1 208~240 0~1 0~120 46~55 40~57.6 0~15 -0.99~1	Freq_Watt PowerRiseSpeed he over-frequency destance INV Stop Command PV Active Setting Enable Island Check ON -OFF Grid Mode Wake on Lamp Bar USB Operation PV Connect Set Rated FREQ. BATT CHG CURR. PATT Envol CLIC VOLT Patt Envol CLICLE VOLT Patt Envol	100.0 100.0 Echo 0 100 0 0 0 0 0 0 0 0 0 0 0 0	Unit 9% Hz A Y ? CC Fz Hz S	Range 0~65535 0~100 0~1 0~65535 0~1 0~65535 0~1 0~60 0~100 40.576 6 6
37 I 38 I 38 I 38 I 10 I 11 I 12 I 22 I 24 I 25 I 26 I 27 I 28 I 29 I 30 I 32 I 34 I 35 I	Freq_Watt UnderFreqPowerRate Freq_Watt PowerFallSpeed SCREENShOt Of the S SCREENShOt of the S Per of arguments in a single line Name INV Start Command INV Active Setting Active Change Rate Limit Certification Mode System Run Mode Buzzer Respond Time System Mode Set Rated Volt. BATT DISCHG CURR. BATT DISCHG CURR. BATT DISCHG CURR. BATT DOD OFF-GRID SOC Limit Power Factor Cold Mode Overfrequency Derating Freq_Watt OverFreqRECVYPoint Freq_Watt UnderFreqStartPoint Freq_Watt UnderFreqEndPoint	2 100.0 Softwal Content Co	% % % V V % % % % % % % % % % % % %	Range 0~65535 0~100 1~30 0~1 0~7 0~60 0~1 208~240 0~1 0~120 46~55 40~57.6 0~15 -0.99~1	Freq_Watt PowerRiseSpeed he over-frequency de INV Stop Command PV Active Setting Enable Island Check ON - OFF Grid Mode Wake on Lamp Bar USB Operation PV Connect Set Rated FREQ. BATT CHG CURR. PAT CHG CURR. PAT CHG CURR. PAT Encol CLIC MOLT Part Encol CLIC MOLT <td>100.0 100.0 Eche 0 100 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>Unit 9% Hz A Y ? Cr Hz Hz Hz Hz</td> <td>Range 0~65535 0~100 0~1 0~65535 0~1 0~65535 0~1 0~60 0~100 40.576 6 6</td>	100.0 100.0 Eche 0 100 0 0 0 0 0 0 0 0 0 0 0 0	Unit 9% Hz A Y ? Cr Hz Hz Hz Hz	Range 0~65535 0~100 0~1 0~65535 0~1 0~65535 0~1 0~60 0~100 40.576 6 6


Annex D.6.	2 Powe	r respo	nse to underfr	equency		Product Servic
		-			arediant a 20/	· · · · ·
				regulation, with f1=49.8Hz	-	
The active p gradient of 2	power value 100% of P _m	e shall r _{ax} per he	not be deviated ertz) for more tl	% of maximum active <u>cha</u> from the required value o nan 10% Pmax. entional delay time: <u>1 s</u> (sh	alculated from t	
Test sequence	Freq (Hz) o	easured active utput power P _{measure} (W)	The calculated active output power as per feature curve P _{shall} (W)	Deviation of P _{measure} and P _{shall} (W)	Deviation within 10% Pmax (Yes/No)
1	50.00		-4925	-5000	75	Yes
2	49.75		-4575	-4625	50	Yes
3	48.65		1958	1975	-17	Yes
4	47.60		5928	6000	-72	Yes
5	48.65		1980	1975	5	Yes
6	49.75		-4542	-4625	83	Yes
7	50.00		-4847	-5000	153	Yes
		8000 6000 4000 2000 -000 -4000 -6000	Power resp 2200 2300 2300 2300 2300 2300 2300 230	ponse to underfrequer -a)Stage 1 532:00 540:00 542:00 540	50.50 50.00 49.50 49.00 (Fr 48.50 48.00 47.50 47.50 46.50 46.00	
			set to get 50% o	ve Power(W) Frequency(Hz) of maximum active <u>chargir</u> the required value calcula		

Stage 2: Inverter ESS SOC is set to get 50% of maximum active <u>charging power</u> till the end of the test. The active power value shall not be deviated from the required value calculated from the feature curve S=5% (a gradient of 40% of P_{max} per hertz) for more than 10% P_{max}.

			,	,	
Test sequence	Freq (Hz)	Measured active output power P _{measure} (W)	The calculated active output power as per feature curve P _{shall} (W)	Deviation of P _{measure} and P _{shall} (W)	Deviation within 10% Pmax (Yes/No)
1	50.00	-2493	-2500	7	Yes
2	49.75	-2351	-2373	22	Yes
3	48.65	228	267	-39	Yes
4	47.60	2766	2787	-21	Yes
5	48.65	240	267	-27	Yes
6	49.75	-2359	-2373	14	Yes

Project No: 64.290.23.30723.01 Rev.: 00 Date: 2023-06-29 Page: 1 of 58 Telephone : +86 20 38320668 Telefax : +86 20 38320478 TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch, TÜV SÜD Group 5F, Communication Building, 163 Pingyun Rd, Huangpu Ave. West,Guangzhou, 510656, P.R.China

Project No: 64.290.23.30723.01 Rev.: 00 Date: 2023-06-29 Page: 2 of 58

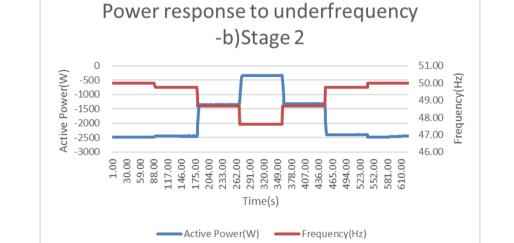
Telephone : +86 20 38320668 Telefax : +86 20 38320478

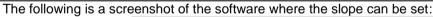
_

Frequency(Hz)

TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch, TÜV SÜD Group 5F, Communication Building, 163 Pingyun Rd, Huangpu Ave. West, Guangzhou, 510656, P.R.China

http://www.tuv-sud.cn


Time(s)


257.

Active Power(W)

Stage 2: Inverter ESS SOC is set to get 50% of maximum active charging power till the end of the test. The active power value shall not be deviated from the required value calculated from the feature curve (a gradient of 16.67% of P_{max} per hertz) for more than 10% Pmax. $P_{max} = 6000 W$, 10% P_{max} = 600 W , Intentional delay time: 1 s (should ≤2s) Measured active Deviation of Deviation within The calculated active Test 10% Pmax output power output power as per Pmeasure and Freq (Hz) sequence feature curve P_{shall} (W) Pshall (W) Pmeasure (W) (Yes/No) 1 50.00 -2493 -2500 7 Yes 2 49.75 -2441 -2443 2 Yes 3 48.65 -1351 -1343 -8 Yes 4 47.60 -336 -293 -43 Yes 48.65 5 -1331 -1343 12 Yes 6 49.75 -2405 -2443 38 Yes 7 32 50.00 -2468 -2500 Yes

NV Active Setting 50 % 0-100 % PV Active Setting 100 % 0-100 Active Change Rate Limit 100 1 100 1 100 1 0 0 0 Certification Mode Disable 0 0 0 0 0 0 0 0 System Run Mode ttery Fire 0 0 0 0 0 0 0 0 System Mode Set UPS 0 0 0 0 0 0 0 0 0 System Mode Set UPS 0 0 0 0 0 0 0 0 0 0 Kated Volt. 0 V 208-240 Rated FREQ. 0 10.00 A 0 KAT TJDSCHG CURR. 120.0 A 0-120 A 8ATT Edual CHG VOLT. 50.4 V 48-57.6 VAT TJOSCHG CURM. 120.0 A 0-120 A 6-57.6 5 5 7 40.80 5 5 7 Vature Factor 0.00 V 40-57.6 40.90 - 40.90 - 40.90 5 7 Vower Factor	١	Name	Echo	Unit	Range	Name	Echo	Unit	Range
B Active Change Rate Limit 100 1 - 30 Enable Island Check Disable 0 - 1 9 Certification Mode Disable 0 - 1 ON -OFF Grid Mode 08 GRD 0 - 1 20 System Run Mode xtery Fire 0 - 7 Wake on Lamp Bar 0 0 0-55335 21 Buzzer Respond Time 0 min 0-60 USB Operation NULL 0 -5 22 System Run Mode Tragpend 0 1 PV Connect Set Independ 0 -1 23 Rated Volt. 0 V 208-240 Rated FREQ. 0 Hz 50-60 24 BATT Dype LEAD 0-1 BATT Edual CHG VOLT. 5.6 V 48-55 26 BATT Float CHG VOLT. 53.5 V 46-55 Freq_Watt UnderFreqStartPoint set ? 27 BATT DDD 46.0 V 40-57.6 V 40.80 V value: 40.80 Ure 0 0 0 <td>16</td> <td>INV Start Command</td> <td>0</td> <td></td> <td>0~65535</td> <td>INV Stop Command</td> <td>0</td> <td></td> <td>0~65535</td>	16	INV Start Command	0		0~65535	INV Stop Command	0		0~65535
19 Certification Mode Disable 0-1 ON-OFF Grid Mode OII GRID 0-1 20 System Run Mode ittery Fire 0-7 Wake on Lamp Bar 0 0 0-55335 21 Buzzer Respond Time 0 min 0-60 USB Operation NULL 0 -5 22 System Mode Set UPS 0-1 PV Connect Set Independ 0 10 0-1 23 Rated Volt. 0 V 208-240 Rated FREQ. 0 Hz 50-60 24 BATT Type LEAD 0-1 BATT CHG CURR. 100.0 A 0-100 25 BATT Float CHG VOLT. 53.5 V 46-55 Freq_Watt UnderfreqStartPoint set ? 26 PGF-GRID SOC Limit 5 % 0-15 * * 27 BATT DOD 46.0 V 40-57.6 * * * 27 BATT CHG URR 5 % 0-15 * *	17	INV Active Setting	50	%	0~100	PV Active Setting	100	%	0~100
20 System Run Mode ttery Fire 0	18	Active Change Rate Limit	100		1~30	Enable Island Check	Disable		0~1
21 Buzzer Respond Time 0 min 0-60 USB Operation NULL 0 0	19	Certification Mode	Disable		0~1	ON -OFF Grid Mode	ON GRID		0~1
22 System Mode Set UPS 0 -1 PV Connect Set Independ 0 -1 23 Rated Volt. 0 V 208-240 Rated FREQ. 0 Hz 50-60 24 BATT Type LEAD 0 -1 BATT CHG CURR. 100.0 A 0 -100 25 BATT Type LEAD A 0-120 BATT CHG CURR. 100.0 A 0 -100 26 BATT Float CHG VOLT. 53.5 V 46-55 BATT Float CHG VOLT. 56.4 V 48-57.6 27 BATT DOD 46.0 V 40-57.6 Preq_Watt UnderfreqStartPoint set * * 28 OFF-GRID SOC Limit 5 % 0-15 *	20	System Run Mode	attery Fir	s	0~7	Wake on Lamp Bar	0		0~65535
23 Rated Volt. 0 V 208-240 Rated FREQ. 0 Hz 50-60 24 BATT Type LEAD 0 -1 BATT CHG CURR. 100.0 A 0 -100 25 BATT Type LEAD A 0-120 BATT CHG CURR. 100.0 A 0 -100 26 BATT Float CHG VOLT. 53.5 V 46-55 BATT Float CHG VOLT. 56.4 V 48-57.6 27 BATT DOD 46.0 V 40-57.6 Preq.Watt UnderfreqStartPoint set -	21	Buzzer Respond Time	0	min	0~60	USB Operation	NULL		0~5
24 BATT Type LEAD 0 -1 BATT CHG CURR. 100.0 A 0 -100 25 BATT DISCHG CURR. 120.0 A 0 -120 BATT Equal CHG VOLT. 56.4 V 48-57.6 26 BATT DOD 46.0 V 46-55 Freq_Watt UnderFreqStartPoint set * * 27 BATT DOD 46.0 V 40-57.6 * value: 49.80 * <	22	System Mode Set	UPS		0~1	PV Connect Set	Independ		0~1
25 BATT DISCHG CURR. 120.0 A 0-120 BATT Equal CHG VOLT. 56.4 V 48-57.6 26 BATT Float CHG VOLT. 53.5 V 46-55 Freq_Watt UnderFreqStartPoint set ? 27 BATT DOD 46.0 V 40-57.6 * value: 49.80 * ? value: 49.80 *	23	Rated Volt.	0	v	208~240	Rated FREQ.	0	Hz	50~60
20 BATT Float CHG VOLT. 53.8 V 46-55 Image: Stress of the st	24	ВАТТ Туре	LEAD		0~1	BATT CHG CURR.	100.0	A	0~100
28 BATT Hoat CHG VOLT. 35.8 V 46-55 V 40-57.6 Value:	25	BATT DISCHG CURR.	120.0	A	0~120			v	
28 OFF-GRID SOC Limit 5 % 0-15 % 0-16 29 Power Factor 0.00 -0.99-1 0 0 0.00 10 0.00 10 0.00 10 0.00 10 0.00 10 0.00 10 0.00 10 0.00 10 0.00 10	26	BATT Float CHG VOLT.	53.5	v	46~55	Freq_Watt UnderFreqStartPoint	set		? >
29 Power Factor 0.00 -0.99~1 0 30 Cold Mode OFF -	27	BATT DOD	46.0	v	40~57.6	value: 49.80			
30 Cold Mode OFF Image: Control of the state of the s	28	OFF-GRID SOC Limit	5	%	0~15				
31 Overfrequency Derating 0.00 Hz 47-52 Freq_Watt OverFreqStartPoint 50.20 Hz 32 Freq_Watt OverFreqGenterPoint 0.00 Hz 47-52 Freq_Watt OverFreqGndPoint 50.20 Hz 33 Freq_Watt OverFreqGenterPoint 0.00 Hz Freq_Watt OverFreqEndPoint 51.50 Hz 34 Freq_Watt OverFreqRECVYDrimt 50.10 Hz Freq_Watt OverFreqRECVYTime 1 s 34 Freq_Watt UnderFreqStartPoint 49.80 Hz Freq_Watt UnderFreqCenterPoint 0.00 Hz	29	Power Factor	0.00		-0.99~1				
32 Freq_Watt OverFreqCenterPoint 0.00 Hz Freq_Watt OverFreqEndPoint 51.50 Hz 33 Freq_Watt OverFreqRECVYPoint 50.10 Hz Freq_Watt OverFreqRECVYTime 1 s 34 Freq_Watt UnderFreqStartPoint 49.80 Hz Freq_Watt UnderFreqCenterPoint 0.00 Hz	30	Cold Mode	OFF					0	K Cancel
33 Freq_Watt OverFreqRECVYPoint 50.10 Hz Freq_Watt OverFreqRECVYTime 1 s 34 Freq_Watt UnderFreqStartPoint 49.80 Hz Freq_Watt UnderFreqCenterPoint 0.00 Hz	31	Overfrequency Derating	0.00	Hz	47~52	Freq_Watt OverFreqStartPoint	50.20	Hz	
34 Freq_Watt UnderFreqStartPoint 49.80 Hz Freq_Watt UnderFreqCenterPoint 0.00 Hz	32	Freq_Wat tOverFreqCenterPoint	0.00	Hz		Freq_Watt OverFreqEndPoint	51.50	Hz	
	33	Freq_Watt OverFreqRECVYPoint	50,10	Hz		Freq_Watt OverFreqRECVYTime	1	s	
	34	Freq_Watt UnderFreqStartPoint	49.80	Hz		Freq_Watt UnderFreqCenterPoint	0.00	Hz	
35 Freq_Watt UnderFreqEndPoint 47. 50 Hz Freq_Watt UnderFreqRECVYPoint 49. 80 Hz	35	Freq_Watt UnderFreqEndPoint	47.50	Hz		Freq_Watt UnderFreqRECVYPoint	49.80	Hz	
36 Freq_Watt UnderFreqRECVYTime 1 s Freq_Watt OverFreqPowerRate 5 %	36	Freq_Watt UnderFreqRECVYTime	1	s		Freq_Watt OverFreqPowerRate	5	%	
37 Freq_Watt UnderFreqPowerRate 2 % Freq_Watt PowerRiseSpeed 100.0 %…	37	Freq_Watt UnderFreqPowerRate	2	%		Freq_Watt PowerRiseSpeed	100.0	%…	
38 Freq_Watt PowerFallSpeed 100.0 %…	38	Freq_Watt PowerFallSpeed	100.0	%…					

Project No: 64.290.23.30723.01 Rev.: 00 Date: 2023-06-29 Page: 3 of 58 Telephone : +86 20 38320668 Telefax : +86 20 38320478 TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch, TÜV SÜD Group 5F, Communication Building, 163 Pingyun Rd, Huangpu Ave. West,Guangzhou, 510656, P.R.China

Number of arguments in a single lin		e w	here t	the over-frequence	cy dei	rati	ng tr	hr
Name	Echo	Unit	Range	Name	Echo	Unit	Range	
16 INV Start Command	0		0~65535	INV Stop Command	0		0~65535	
17 INV Active Setting	50	%	0~100	PV Active Setting	100	%	0~100	
18 Active Change Rate Limit	100		1~30	Enable Island Check	Disable		0~1	
19 Certification Mode	Disable		0~1	ON -OFF Grid Mode	ON GRID		0~1	
20 System Run Mode	attery Fir	s	0~7	Wake on Lamp Bar	0		0~65535	
21 Buzzer Respond Time	0	min	0~60	USB Operation	NULL		0~5	
22 System Mode Set	UPS		0~1	PV Connect Set	Independ		0~1	
23 Rated Volt.	0	v	208~240	Rated FREQ.	0	Hz	50~60	
24 BATT Type	LEAD		0~1	BATT CHG CURR.	100.0	A	0~100	
25 BATT DISCHG CURR.	120.0	A	0~120	🟫 Freq_Watt UnderFreqPowerRate	e set		?	×
26 BATT Float CHG VOLT.	53, 5	v	46~55	value:				
27 BATT DOD	46. 0	v	40~57.6	value:				
28 OFF-GRID SOC Limit	5	%	0~15					
29 Power Factor	0.00		-0.99~1					
30 Cold Mode	OFF					0	E Cance	el
31 Overfrequency Derating	0.00	Hz	47~52	Freq_Watt OverFreqStartPoint	50.20	Hz		
32 Freq_Wat tOverFreqCenterPoint	0.00	Hz		Freq_Watt OverFreqEndPoint	51.50	Hz		
33 Freq_Watt OverFreqRECVYPoint	50,10	Hz		Freq_Watt OverFreqRECVYTime	1	s		
34 Freq_Watt UnderFreqStartPoint	49, 80	Hz		Freq_Watt UnderFreqCenterPoint	0.00	Hz		
35 Freq_Watt UnderFreqEndPoint	47.50	Hz		Freq_Watt UnderFreqRECVYPoint	49.80	Hz		
36 Freq_Watt UnderFreqRECVYTime	1	s		Freq_Watt OverFreqPowerRate	5	%		
37 Freq_Watt UnderFreqPowerRate	2	%		Freq_Watt PowerRiseSpeed	100.0	%···		
38 Freq_Watt PowerFallSpeed	100.0	%…						

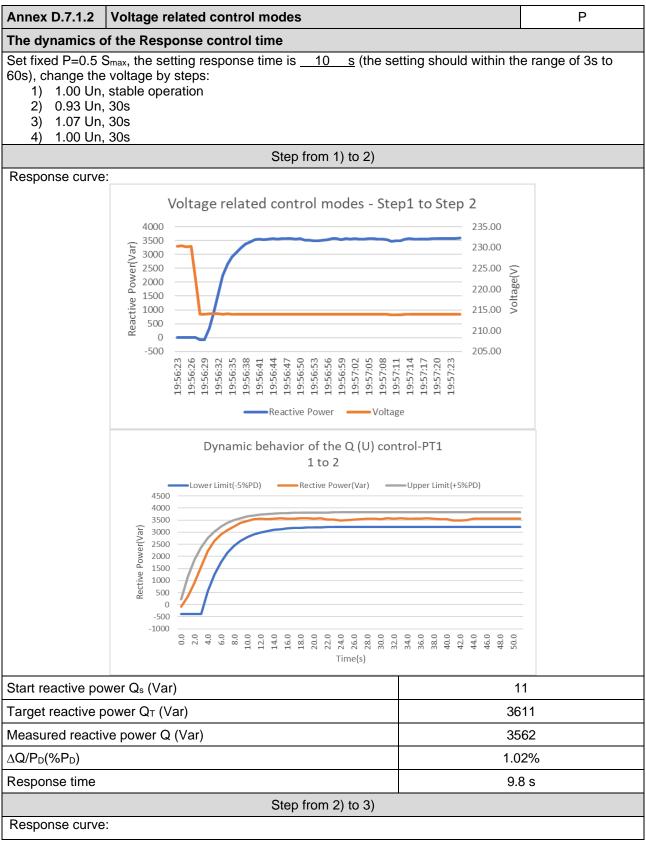
ix Power factor (PF) ge ominal voltage (0.85Ur 10 0.8000 un 0.8058 un 195.5 587 -431	50 0.8000 un 0.7995 un 195.5	100* 0.8000 un 0.7989 un
10 0.8000 un 0.8058 un 195.5 587	50 0.8000 un 0.7995 un 195.5	0.8000 un
0.8000 un 0.8058 un 195.5 587	0.8000 un 0.7995 un 195.5	0.8000 un
0.8058 un 195.5 587	0.7995 un 195.5	
195.5 587	195.5	0.7989 un
587		
		195.7
-431	2983	4009
	-2241	-3019
729	3731	5019
-	0.15%	0.50%
10	50	100*
0.8000 ov	0.8000 ov	0.8000 ov
0.8031 ov	0.8040 ov	0.8056 ov
195.6	195.7	195.8
618	3059	4087
458	2262	3005
769	3805	5073
-	0.21%	0.82%
ominal voltage (0.90Ur	ı)	
10	50	100*
0.8000 un	0.8000 un	0.8000 un
0.8015 un	0.8042 un	0.7999 un
207.0	207.2	207.3
583	2992	4281
-435	-2211	-3212
728	3721	5352
-	0.65%	0.36%
10	50	100*
0.8000 ov	0.8000 ov	0.8000 ov
0.8064 ov	0.8044 ov	0.8055 ov
207.0	207.2	207.3
613	3056	4307
450	2257	3169
760	3799	5348
-	0.11%	1.08%
ıge (1.00Un)		
10	50	100*
0.8000 un	0.8000 un	0.8000 un
	729 - 10 0.8000 ov 0.8031 ov 0.8031 ov 195.6 618 458 769 - ominal voltage (0.90Ur 0.8000 un 0.8015 un 207.0 583 -435 728 - 10 0.8000 ov 0.8000 ov 0.8064 ov 207.0 613 450 760 - 10 0.8064 ov 207.0 613 450 760 - 10 0.8064 ov 207.0	729 3731 - 0.15% 10 50 0.8000 ov 0.8000 ov 0.8031 ov 0.8040 ov 195.6 195.7 618 3059 458 2262 769 3805 - 0.21% ominal voltage (0.90U) 0.8000 un 10 50 0.8000 un 0.8000 un 0.8015 un 0.8042 un 207.0 207.2 583 2992 -435 -2211 728 3721 - 0.65% 10 50 0.8000 ov 0.8000 ov 0.8000 ov 0.8000 ov 0.8000 ov 0.8000 ov 0.8064 ov 0.8044 ov 207.0 2257 760 3799 - 0.11% tge (1.00Un) 50

Project No: 64.290.23.30723.01 Rev.: 00 Date: 2023-06-29 Page: 1 of 58 Telephone : +86 20 38320668 Telefax : +86 20 38320478 TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch, TÜV SÜD Group 5F, Communication Building, 163 Pingyun Rd, Huangpu Ave. West,Guangzhou, 510656, P.R.China

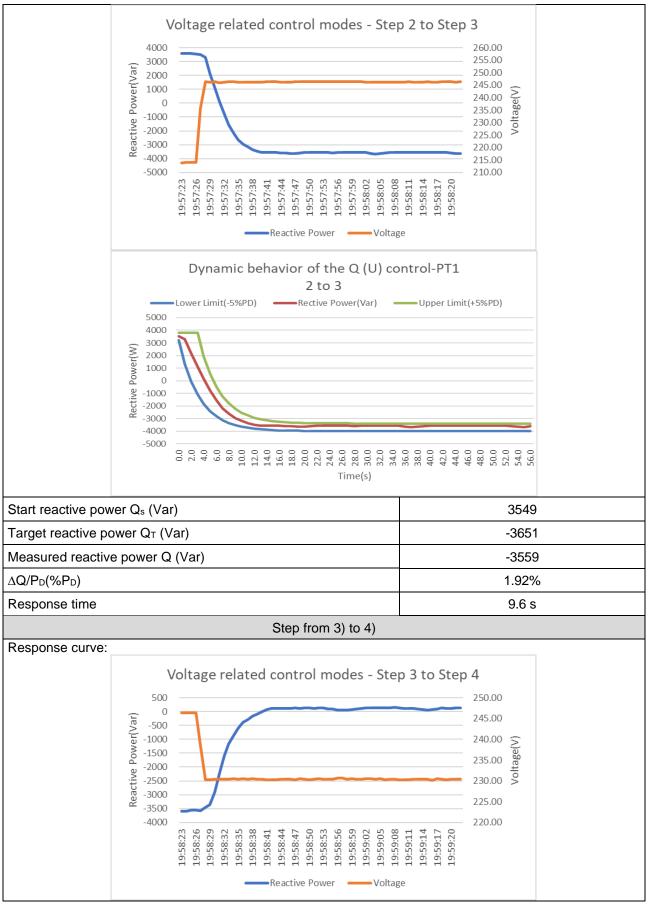
			Product Service
Tested cosq	0.8012 un	0.8008 un	0.8013 un
Tested voltage(V)	230.0	230.2	230.3
Active power P (W)	636	3060	4837
Reactive power Q(Var)	-475	-2289	-3612
Apparent power S (VA)	793	3821	6037
Deviation ΔQ within 2%S _{max}	-	-0.64%	0.11%
P/S _{max} (%)	10	50	100*
Cosφ Set, Generation	0.8000 ov	0.8000 ov	0.8000 ov
Tested cosq	0.8036 ov	0.8056 ov	0.8044 ov
Tested voltage(V)	230.1	230.2	230.3
Active power P (W)	602	3039	4851
Reactive power Q(Var)	446	2235	3582
Apparent power S (VA)	749	3772	6030
Deviation ΔQ within 2%S _{max}	-	-0.25%	0.38%
Case D: Tested at 1.10 time of	Nominal voltage (1.10U	n)	·
P/S _{max} (%)	10	50	100*
Cosφ Set, Generation	0.8000 un	0.8000 un	0.8000 un
Tested cosφ	0.8056 un	0.8007 un	0.7981 un
Tested voltage(V)	253.0	253.2	253.2
Active power P (W)	620	3014	4776
Reactive power Q(Var)	-456	-2255	-3606
Apparent power S (VA)	770	3764	5984
Deviation ΔQ within 2%S _{max}	-	0.09%	-0.40%
P/S _{max} (%)	10	50	100*
Cosφ Set, Generation	0.8000 ov	0.8000 ov	0.8000 ov
Tested cosφ	0.8011 ov	0.8041 ov	0.8036 ov
Tested voltage(V)	253.1	253.2	253.3
Active power P (W)	644	3019	4828
Reactive power Q(Var)	481	2233	3576
Apparent power S (VA)	804	3755	6009
Deviation ΔQ within 2%S _{max}	-	-0.53%	-0.75%
Fix	Reactive power Q(Var)	generation mode	
Case A: Tested at 0.85 time of	Nominal voltage (0.85U	n)	
P/S _{max} (%)	10	50	100*
Q set value generation	Q=60%S _{max} (under-excited)	Q=60%S _{max} (under-excited)	Q=60%S _{max} (under-excited)
Tested cosφ	0.1727 un	0.6320 un	0.6974 un
Tested voltage(V)	195.5	195.7	195.7
Active power P (W)	626	2972	3557

Telephone : +86 20 38320668 Telefax : +86 20 38320478 TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch, TÜV SÜD Group 5F, Communication Building, 163 Pingyun Rd, Huangpu Ave. West,Guangzhou, 510656, P.R.China

			Product Servic
Reactive power Q(Var)	-3568	-3645	-3655
Apparent power S (VA)	3623	4703	5100
Deviation ΔQ within 2%S _{max}	-	-0.74%	-0.91%
P/S _{max} (%)	10	50	100*
Cosφ Set, Generation	Q=60%S _{max} (over-excited)	Q=60%S _{max} (over-excited)	Q=60%S _{max} (over-excited)
Tested cosφ	0.1592 ov	0.6407 ov	0.7102 ov
Tested voltage(V)	195.6	195.8	195.8
Active power P (W)	588	3040	3655
Reactive power Q(Var)	3645	3643	3623
Apparent power S (VA)	3692	4745	5147
Deviation ΔQ within 2%S _{max}	-	0.72%	0.39%
Case B: Tested at 0.90 time of	Nominal voltage (0.90U	n)	
P/S _{max} (%)	10	50	100*
Cosφ Set, Generation	Q=60%S _{max} (under-excited)	Q=60%S _{max} (under-excited)	Q=60%S _{max} (under-excited)
Tested cosφ	0.1694 un	0.6380 un	0.7408 un
Tested voltage(V)	207.0	207.2	207.3
Active power P (W)	610	2983	4015
Reactive power Q(Var)	-3547	-3601	-3640
Apparent power S (VA)	3599	4676	5419
Deviation ΔQ within 2%S _{max}	-	-0.01%	-0.67%
P/S _{max} (%)	10	50	100*
Cosφ Set, Generation	Q=60%S _{max} (over-excited)	Q=60%S _{max} (over-excited)	Q=60%S _{max} (over-excited)
Tested cosφ	0.1740 ov	0.6402 ov	0.7497 ov
Tested voltage(V)	207.1	207.2	207.3
Active power P (W)	643	3031	4078
Reactive power Q(Var)	3641	3638	3601
Apparent power S (VA)	3698	4735	5439
Deviation ΔQ within 2%S _{max}	-	0.63%	0.02%
Case C: Tested at Nominal vol	tage (1.00Un)		
P/S _{max} (%)	10	50	100*
Cosφ Set, Generation	Q=60%S _{max} (under-excited)	Q=60%S _{max} (under-excited)	Q=60%S _{max} (under-excited)
Tested cosφ	0.1733 un	0.6462 un	0.7987 un
Tested voltage(V)	230.0	230.1	230.2
Active power P (W)	621	3049	4827
Reactive power Q(Var)	-3531	-3601	-3637
Apparent power S (VA)	3586	4719	6044
Deviation ΔQ within 2%S _{max}	-	-0.02%	-0.62%



P/S _{max} (%)	10	50	100*
Cosφ Set, Generation	Q=60%S _{max} (over-excited)	Q=60%S _{max} (over-excited)	Q=60%S _{max} (over-excited)
Tested cosφ	0.1730 ov	0.6393 ov	0.8006 ov
Tested voltage(V)	230.1	230.2	230.0
Active power P (W)	632	3019	4809
Reactive power Q(Var)	3597	3631	3602
Apparent power S (VA)	3652	4722	6007
Deviation ΔQ within 2%S _{max}	-	0.51%	0.03%
Case D: Tested at 1.10 time of	Nominal voltage (1.10U	n)	
P/S _{max} (%)	10	50	100*
Cosφ Set, Generation	Q=60%S _{max} (under-excited)	Q=60%S _{max} (under-excited)	Q=60%S _{max} (under-excited)
Tested cosφ	0.1697 un	0.6520 un	0.8020 un
Tested voltage(V)	253.0	253.0	253.1
Active power P (W)	604	3072	4828
Reactive power Q(Var)	-3506	-3572	-3595
Apparent power S (VA)	3558	4711	6019
Deviation ΔQ within 2%S _{max}	-	0.46%	0.08%
P/S _{max} (%)	10	50	100*
Cosφ Set, Generation	Q=60%S _{max} (over-excited)	Q=60%S _{max} (over-excited)	Q=60%S _{max} (over-excited)
Tested cosφ	0.1645 ov	0.6429 ov	0.8005 ov
Tested voltage(V)	253.1	253.1	253.2
Active power P (W)	609	3059	4840
Reactive power Q(Var)	3650	3644	3624
Apparent power S (VA)	3701	4758	6046
Deviation ΔQ within 2%S _{max}	-	0.74%	0.40%



Annex D.7.1.2	P					
Maximal active p	5400					
Set point 1: P=0 Set point 2: P=0 Set point 3: P=1	.5 P _{Emax} , co	sφ=1	excited			
Percentage of output active power P/P _{max} (%)	Measure d active power P (W)	Measured apparent power S (VA)	Measured reactive power Q(Var)	Measured displaceme nt factor cosφ	Displacement factor as to feature curve	Whether the accurac fulfill according to clause 4.7.2.2 (± 2% Smax)
10%	585	585	12	0.9997	1.000	Yes
20%	1200	1200	-11	0.9999	1.000	Yes
30%	1819	1819	-34	0.9998	1.000	Yes
40%	2428	2429	-60	0.9996	1.000	Yes
50%	3041	3042	-84	0.9962	1.000	Yes
60%	3643	3693	-605	0.9864 un	0.980 un	Yes
70%	4270	4452	-1261	0.9590 un	0.960 un	Yes
80%	4781	5098	-1770	0.9378 un	0.940 un	Yes
90%	5409	5879	-2304	0.9199 un	0.920 un	Yes
100%*	5405	6009	-2626	0.8994 un	0.900 un	Yes
90%	5408	5878	-2301	0.9201 un	0.920 un	Yes
80%	4701	5024	-1772	0.9357 un	0.940 un	Yes
70%	4271	4453	-1260	0.9591 un	0.960 un	Yes
60%	3646	3697	-608	0.9863 un	0.980 un	Yes
50%	3045	3047	-85	0.9996	1.000	Yes
40%	2430	2431	-56	0.9997	1.000	Yes
30%	1764	1764	-34	0.9998	1.000	Yes
20%	1184	1184	-10	0.9999	1.000	Yes
10%	583	584	12	0.9997	1.000	Yes

Project No: 64.290.23.30723.01 Rev.: 00 Date: 2023-06-29 Page: 3 of 58 Telephone : +86 20 38320668 Telefax : +86 20 38320478 TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch, TÜV SÜD Group 5F, Communication Building, 163 Pingyun Rd, Huangpu Ave. West,Guangzhou, 510656, P.R.China

	10	Lower Limit(-5%PD) — Rective Power(Var) — Upper Limit(+5%PD)							
	5	00							
	-5- 10- 15- 20- 25- 30- 30- 30- 30-	00							
	₹ -15 4 -20	00							
	-2500 2 -3000 -3500								
	-40 -45	00							
		0.0 2.0 4.0 8.0	10.0 12.0 14.0 16.0 18.0 20.0	22:0 24:0 26:0 28:0 33:0 28:0 28:0	34,0 36,0 38,0 40,0 42,0 44,0	46.0 48.0 50.0			
Start reactive	e power Qs (V	ar)				-3549			
	ve power Q⊤ (. ,				51			
	active power	Q (Var)				130			
∆Q/P _D (%P _D)						1.65%			
Response tir				fan Oraș în		9.2 s			
Remark: Q(U) control mode, voltage setting is 0.93Un for Qmax, 1.07Un for Qmin.									
The voltage related control modes control the reactive power output -Qmax and Qmax is defined by testing in Cl.4.7.2. Fixed active power setting 0.5 Smax									
			1.4.7.2. Fixed	active power	setting 0.5 Sm	lax			
Qmax at this a	ctive power (\	var)				Required	±3600		
Grid simulator voltage (Un)	Measured Voltage U _{pos} (V)	Measured active power P (W)	Measured apparent power S (VA)	Measured displaceme nt factor cosφ	Measured reactive power Q(Var)	reactive power as to feature curve Q(Var)	Deviation of reactive power(Var)		
0.91 Un	209.3	2976	4647	0.6403 ov	3570	3600	30		
0.93 Un	213.8	2976	4643	0.6409 ov	3564	3600	36		
0.95 Un	218.5	2973	3479	0.8544 ov	1808	1800	8		
0.97 Un	223.0	2976	2976	0.9999 ov	13	0	13		
1.00 Un	230.2	2971	2971	0.9999 ov	38	0	38		
1.03 Un	237.1	2973	2973	0.9999 ov	28	0	28		
1.05 Un	241.6	2975	3475	0.8561 un	-1796	-1800	4		
1.07 Un	246.2	2993	4667	0.6412 un	-3582	-3600	18		
1.09 Un	250.9	2987	4674	0.6391 un	-3595	-3600	5		
1.07 Un	246.1	2993	4657	0.6428 un	-3567	-3600	33		
1.05 Un	241.5	2984	3482	0.8568 un	-1796	-1800	4		
1.03 Un	237.0	2970	2970	0.9999 ov	4	0	4		
1.00 Un	230.3	2976	2976	0.9999 un	-6	0	6		
0.97 Un	223.1	2985	2985	0.9999 ov	7	0	7		
0.95 Un	218.6	2969	3473	0.8551 ov	1801	1800	1		

Project No: 64.290.23.30723.01 Rev.: 00 Date: 2023-06-29 Page: 4 of 58 Telephone : +86 20 38320668 Telefax : +86 20 38320478 TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch, TÜV SÜD Group 5F, Communication Building, 163 Pingyun Rd, Huangpu Ave. West,Guangzhou, 510656, P.R.China

												Troduc	0011100				
0.93 Un		213.8	2	2975	4	659	0.638	5 ov	3586		3600	1	4				
0.91 Un		209.3	2	2977	4	644	0.6410 ov		0.6410 ov 3		ov 3565		10 ov 3565		3600	3	85
Limit the rea	Limit the reactive power at low active power																
Qmin																	
P/P _{max} [%] S point	Set-	Vac [V] s point			P/P _{max} [%] Measured		: [V] sured		[Var] asured		Ω [Var] (pected	Δ (< ± 2 %					
< 20 %		1.03 V	'n	17.35	5%	23	7.0		104		0	1.73	3%				
< 20 %		1.05 V	'n	17.32	2%	24	1.6		104		0	1.73	3%				
<20 % -> 30) %	1.05 V	'n	29.72	2%	24	1.6	-	1812		-1800	0.20)%				
50 %	50 % 1.		'n	49.57	7%	24	1.5	-	1762		-1800	0.63	3%				
100 %*	100 %*		1.05 Vn		94.37%		1.5	-	-1762		-1800	0.63	3%				
100 %*		1.07 Vr		79.18%		24	6.1	-	-3579		-3600	0.35	5%				
100 % -> 10	00 % -> 10 %		'n	8.87	8.87%		5.9	-	-3540		-3600	1.00)%				
P ≤ 5 %		1.07 V	'n	3.30	%	245.8			57		0	0.95	5%				
						Qn	nax										
P/P _{max} [%] S point	Set-	Vac [V] : point		P/P _{max} Measu		Vac meas	: [V] sured		[Var] asured		Q [Var] (pected	$\frac{\Delta}{(<\pm 2\%)}$					
< 20 %		0.97 V	'n	17.70)%	223	3.2		1		0	0.02	2%				
< 20 %	< 20 %		0.95 Vn		8%	21	8.5		4		0	0.07	7%				
<20 % -> 30) %	0.95 V	/n 29.6)%	21	8.6		1763		1800	0.62	2%				
50 %		0.95 V	'n	49.53	8%	21	8.5		1813		1800	0.22	2%				
100 %*	100 %* 0.9		.95 Vn 90		2%	21	8.6		1796		1800	0.07	7%				
100 %*		0.93 V	'n	73.53	8%	21	3.8		3582		3600	0.30)%				
100 % -> 10) %	0.93 V	'n	10.38%		<u>6</u> 213.9			3589		3600	0.18	3%				
P≤ 5 %		0.93 V	'n	4.67	%	21	3.9		5		0	0.08	3%				
Domork:																	

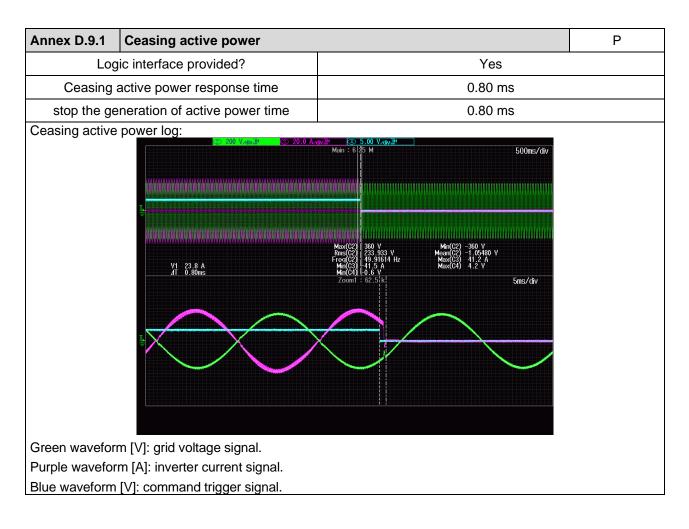

Remark:

Lock-in value setting: 20%Pn, Lock-out value setting: 5%Pn
 "*" means that the active power does not reach the set value due to the apparent power limitation.

nnex D7.2 Voltag	e related active power reduction	ion P(U) P
	<u>100% 102% 104% 106</u> -10% -20%	Tension [p.u.] 6% 108% 110% 112%
	-30% -40% -50%	
	Figure 15 - Exam Setting active po	nple curve for P(U)
Voltage in % of Un	Measured power(W)	Standard power(W)
100%	6041.39	6000
108%	5958.75	6000
110%	4778.65	4800
112%	3558.77	3600
114%	2352.20	2400
116%	1158.74	1200
118%	-53.67	0
	Setting active po	ower =50% P _{max}
Voltage in % of Un	Measured power(W)	Standard power(W)
100%	3004.01	3000
108%	2964.15	3000
110%	1751.75	1800
112%	547.84	600
114%	-49.16	0
116%	-52.75	0
118%	-54.33	0
Response Time		
	P _{max} , Sample test from 100%Un	to 116%Un the reaching time: 11s

Annex D8	Connection	and reconnect	ion		Р
	Setting value	s for grid coupli	ng protection in the I	ow-voltage grid	
	a) f=49.8	5Hz, no reconne	ection allowed		Yes
	b) f=49.9	5Hz, reconnecti	on allowed		Yes
	c) f=50.1	5Hz, no reconne	ection allowed		Yes
Test	d) f=50.0	5Hz, reconnecti	on allowed		Yes
procedure	e) U=84%	6 Un, no reconn	ection allowed		Yes
	f) U=86%	6 Un, reconnect	ion allowed		Yes
	g) U=111	% Un, no recon	nection allowed		Yes
	h) U=109	% Un, reconned	ction allowed		Yes
Record the	reconnection p	ower at above	step d, if reconnection	on is successful	
Test sequence	Freq (Hz)	Time after reconnection	Measured active output power P _{measure} (W)	ΔP/Pn Arise during next 1 min	Gradient of arising power∆P/t under 10% Pmax (Yes/No)
1	50.05	0.0min	109	9.87%	Yes
2	50.05	0.5min	405	9.47%	Yes
3	50.05	1.0min	701	9.33%	Yes
4	50.05	1.5min	973	9.28%	Yes
5	50.05	2.0min	1261	9.20%	Yes
6	50.05	2.5min	1530	9.37%	Yes
7	50.05	3.0min	1813	9.25%	Yes
8	50.05	3.5min	2092	9.27%	Yes
9	50.05	4.0min	2368	9.35%	Yes
10	50.05	4.5min	2648	9.40%	Yes
11	50.05	5.0min	2929	9.37%	Yes
12	50.05	5.5min	3212	9.32%	Yes
13	50.05	6.0min	3491	9.27%	Yes
14	50.05	6.5min	3771	9.27%	Yes
15	50.05	7.0min	4047	9.38%	Yes
16	50.05	7.5min	4327	9.47%	Yes
17	50.05	8.0min	4610	9.45%	Yes
18	50.05	8.5min	4895	9.37%	Yes
19	50.05	9.0min	5177	9.32%	Yes
20	50.05	9.5min	5457	9.20%	Yes
21	50.05	10.0min	5736	5.08%	Yes
22	50.05	10.5min	6009	0.48%	Yes
23	50.05	11.0min	6041		
24	50.05	11.5min	6038		

Telephone : +86 20 38320668 Telefax : +86 20 38320478 TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch, TÜV SÜD Group 5F, Communication Building, 163 Pingyun Rd, Huangpu Ave. West,Guangzhou, 510656, P.R.China



					Product Service
	Re	cord the rec	onnection powe	er at above step o	k
		Ac	tive Power(W)	Frequency(Hz)	
	7000				52.50
	€000 € 5000]			52.00 51.50 ହ
	1000 A000				51.00
	ହୁ 3000 କୁ 2000				50.50 and 50.00 b
	1000 gt				49.50 H
	-1000				49.00 48.50
	-1000	1.00 44.00 87.00 .30.00 .73.00 .16.00	302.00 345.00 388.00 431.00 474.00 517.00 560.00	646.00 689.00 775.00 818.00 861.00 904.00	40.50
	7	44 87 87 130 130 173 216 216		646 689 689 689 775 775 775 818 818 861 861 904	
			Time(s)		
Record the	connection po	wer at nominal s	setting (230Va.c., 50	Hz), if reconnection is	s successful
Test		Time after	Measured active	ΔP/Pn Arise during	Gradient of arising
sequence	Freq (Hz)	reconnection	output power P _{measure} (W)	next 1 min	power∆P/t under 20% Pmax (Yes/No)
1	50.00	0.0min	31	9.80%	Yes
2	50.00	0.5min	336	9.42%	Yes
3	50.00	1.0min	619	9.50%	Yes
4	50.00	1.5min	901	9.33%	Yes
5	50.00	2.0min	1189	9.23%	Yes
6	50.00	2.5min	1461	9.40%	Yes
7	50.00	3.0min	1743	9.27%	Yes
8	50.00	3.5min	2025	9.30%	Yes
9	50.00	4.0min	2299	9.40%	Yes
10	50.00	4.5min	2583	9.28%	Yes
11	50.00	5.0min	2863	9.33%	Yes
12	50.00	5.5min	3140	9.35%	Yes
13	50.00	6.0min	3423	9.27%	Yes
14	50.00	6.5min	3701	9.37%	Yes
15	50.00	7.0min	3979	9.42%	Yes
16	50.00	7.5min	4263	9.32%	Yes
17	50.00	8.0min	4544	9.42%	Yes
18	50.00	8.5min	4822	9.45%	Yes
19	50.00	9.0min	5109	9.30%	Yes
20	50.00	9.5min	5389	9.30%	Yes
21	50.00	10.0min	5667	6.17%	Yes
22	50.00	10.5min	5947	1.50%	Yes
23	50.00	11.0min	6037		

Telephone : +86 20 38320668 Telefax : +86 20 38320478 TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch, TÜV SÜD Group 5F, Communication Building, 163 Pingyun Rd, Huangpu Ave. West,Guangzhou, 510656, P.R.China

Project No: 64.290.23.30723.01 Rev.: 00 Date: 2023-06-29 Page: 10 of 58 Telephone : +86 20 38320668 Telefax : +86 20 38320478 TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch, TÜV SÜD Group 5F, Communication Building, 163 Pingyun Rd, Huangpu Ave. West,Guangzhou, 510656, P.R.China

http://www.tuv-sud.cn

.....End of test report.....